Local and global fields, and local-global principles (LCP).
Esp. Hasse-Minkousk:
If q is a off $/ \mathbb{Q}$, then
q is isotropic $/ Q \Leftrightarrow q$ isotipic $/ \mathbb{R}$ cel $/ \mathbb{Q}_{p}$ frallp.
Global fiels F :
(1) Finct extension of Q_{i} \# filds.
(2) Finite extensious of $\mathbb{F}_{r}(t)$: global function fiels.

$V \leftrightarrow 1$. i_{V} on $F=$ frac R
Completion, $F_{v} \supset \widehat{R}_{m} \supset R_{(a)}^{c^{F}} \supset R=$ De.d.

$$
\text { Ex. } \mathbb{R}_{p} \supset c 己_{p} \supset \mathbb{Z}_{(p)}^{c} \supset \mathbb{Z}^{c}
$$

(also archi-ichea abovel; not disw.val.) Ex. $\quad \mathbb{R} \supset \mathbb{Q}$

A key result for codurs: (π) unicumies, Hensel's Lemma R cdur, ön=mailidel,

$$
\begin{aligned}
& f(x) \in R[x], \alpha_{0} \in R, f\left(\alpha_{0}\right) \in m, \\
& f^{\prime}\left(\alpha_{0}\right) \notin m . \quad \text { Then } \exists \alpha \in R \text { st } \\
& f(\alpha)=0 \text { and } \alpha \equiv \alpha_{0}(m d \mu)
\end{aligned}
$$

Pf is essertially to we Newtin's thethod (New tom- Raphoon algointhn) to gether with completeaers to get Cavergence to a solution.

Also parallel to Implizit Fn Thm

$$
\mathbb{R}\left(\in J \longleftrightarrow\left\{\begin{array}{l}
\text { function on } t \text {-line } \\
\text { near } t=0
\end{array}\right\}\right.
$$

In Hensd's Lerms we heve:

$$
\begin{aligned}
& \text { In Hensd's Lerms we heve: } v\left(\alpha-\alpha_{0}\right) \geq 0 \text {. } \\
& v\left(f\left(x_{0}\right)\right)>0, v\left(f^{\prime}\left(x_{0}\right)\right)=0 \Rightarrow \exists \alpha: f(\alpha)=0, v
\end{aligned}
$$

Strong form of Hensels Leame:
Say $\alpha_{0} \in R, n \geq 0, r \geq 0$,

$$
\begin{aligned}
& S_{a y} \alpha_{0} \in \mathbb{R}, n=0, \\
& v\left(f\left(\alpha_{0}\right)\right)\left(f^{\prime}\left(s_{s}\right)\right)=n ; r, \quad
\end{aligned}
$$

then $\exists \alpha \in R$ st

$$
\begin{aligned}
& \text { then } J \alpha \in R \quad s t \\
& f(\alpha)=0, \quad v\left(\alpha-\alpha_{0}\right) \geq n+r .
\end{aligned}
$$

(Usual fim is the cure $n=0, r=1$)
Using the usud form, we get:
Prge R cavr, masie idel m, vesilufle $k=R / m$.
Say char $h \not x r$. Lat $u \in U:=R^{x}$ with
inge $\bar{u} \in h^{*}$. Theal

$$
\begin{aligned}
& =h^{x} \text {. Thenl } \\
& u \in R^{x r} \Longleftrightarrow \bar{u} \in h^{x^{-}} .
\end{aligned}
$$

Con Hers, if ueR ande $\equiv 1($ nod m) then

$$
u \in U, \bar{u}=1 \in h^{k n} \text {; and } u \in R^{* r} c F^{*} \text {. }
$$

$$
F=\text { fracR } \underset{T}{T}
$$

Mare gencoll, everynm-O elennt $a \in F$
can be written as $a=4 \pi^{n}$, $v(u)=0$ when $n=v(a)$, and u is a unitii R. Heve:

$$
a \in F^{x^{r}} \Leftrightarrow r \ln \text { and } \bar{u} \in h^{x r} \text {. }
$$

$$
\begin{aligned}
& E \times R=R(E) \\
& m=(t)
\end{aligned}
$$

In particular, take $r=2$, and chen $k \neq 2$. $u \in U=R^{x}$ is a squat $\Leftrightarrow \bar{u} \in h^{X}$ is a sum.
$u \pi^{n} \in F^{x^{2}} \Leftrightarrow \bar{u} \in h^{x^{2}}$ and n is even.
This lead to a map

$$
h^{x} / h^{x^{2}} \longrightarrow F^{x} / F^{x^{2}}
$$

as follows:
Take a square class in $h^{*} / h^{x^{2}}$; pick a representative $\bar{a} \in h^{x}$.
Choose a lift: $a \in R^{x}=\bigcup \subset F^{x}$

$$
\stackrel{I}{a} \in h^{x}
$$

Send the given Square class in $h^{x} / h^{x^{2}}$ to the square chess of a in $F x / F^{x^{2}}$ Well defies: For a different lift a' $a^{\prime} / a \equiv 1(\bmod \mu)$, so $a^{\prime} / a \in F^{x^{2}}$, So gat the same class.
Easy, to check this is an injective how, and ing es $=\{$ square close. of $u / v(u)=0\}$ Gat $l \rightarrow h^{x} / h^{x^{2}} \xrightarrow[i]{ } F^{*} / F^{x^{2}} \xrightarrow{v} \mathbb{Z} / 2 \rightarrow 0$ i. init

As a result we get a map

$$
\begin{aligned}
& i: \hat{w}(h) \longrightarrow \hat{w}(F) \\
& \left\langle a_{1}, \ldots, a_{n}\right\rangle \longmapsto\left\langle i\left(q_{1}, \ldots i\left(a_{n}\right\rangle\right\rangle\right.
\end{aligned}
$$

Also define
2:

$$
\begin{aligned}
& \hat{w}(l) \longrightarrow \hat{\omega}(F) \\
& \left\langle a_{3}, \ldots, a_{n}\right\rangle \longmapsto\left\langle i\left(a_{1}\right) \pi_{1}, \ldots, i\left(a_{2}\right) \pi\right\rangle \\
& =\langle\pi\rangle i\left(\left\langle a_{1},-z, a_{i}\right\rangle\right) \text {. }
\end{aligned}
$$

We will show i (i, j) induces a
group iso $W(h) \oplus W(h) \xrightarrow{\sim} W(F)$.
(Theorem of Springe-)
This follows from:
$C_{\text {ai }}(i, j): \hat{\omega}(\lambda) \oplus \underset{(\alpha, \beta)}{\hat{\omega}(\mu) \longrightarrow i(\alpha)} \underset{\sim}{\hat{\omega}}(F)$
is a surjeative gropphmaix ${ }^{(\alpha, \alpha)+j(\beta)}$

$$
\operatorname{ker}(i ;)=\mathbb{Z} \cdot(h,-h) ;
$$

ie. have a group iso

$$
\begin{aligned}
& \text { have a groups iso } \\
& f=(i, i):(\hat{W}(h) \oplus \hat{W}(h)) / \underset{\sim}{\sim}(h,-h) \\
& \sim
\end{aligned} \hat{W}(F) .
$$

$V_{12:}$: To get the the from the clair: In the claim, On left mol out $b_{7} \mathbb{T} h \oplus 0$ and on right" " "Cheamenteteo all get $W(h) \oplus W(l) \leftrightarrows W(f)$.

To prove the above claim re
$\left(i_{i j}\right): \hat{\omega}(h) \oplus \hat{\omega}(h) \rightarrow \hat{\omega}_{0}(F)$,
note $(h,-h)$

$$
\left(\left\langle b_{1}^{\prime \prime}-1\right\rangle,-\langle 1,-1) \mapsto\langle 1,-1\rangle^{\prime \prime}-\langle\pi,-\pi\rangle\right.
$$

So $\mathbb{Z} \cdot(h,-h) \subset \operatorname{ker}(i, i)_{;}$ia hove.

$$
(\hat{\omega}(h) \oplus \hat{\omega}(l)) / D \cdot(h-l) \rightarrow \hat{\omega}(F) .
$$

Want this is iso. STS ヨinverseig.
Define $g\left(\begin{array}{c}\langle a\rangle) \\ u \pi^{n}\end{array}=\left\{\begin{array}{l}(\langle\bar{u}\rangle, 0), \text { neven } \\ (0,\langle\bar{u}\rangle), \text { nee }\end{array}\right.\right.$
Ald extend to $\left\langle a_{1}, a_{i}\right\rangle$.
U sing chain equivclaci, can check this is well defined, and is a 2 -side inverse to f. So \sim.

Soweget the claim, α gat
$(i, j): W(h) \oplus W(h) \xrightarrow{\sim} W(F)$.
We can also describe the inverse mop.

First: Each square clans has a
representation of the form $u \in \cup$ o- πu, for $u \in U$.
So a reg. क.f. q over F can be put in the form $q=q_{1} \perp(\pi) q_{2}$ when

$$
q_{1}=\left\langle u_{1,}, u_{r}\right\rangle, q_{2}=\left\langle u_{r+1}, u_{n}\right\rangle
$$

for some units $u, \in U=R^{x} \subset F^{x}$.
Get q.f.'s over h :

$$
\bar{q}_{1}=\left\langle\bar{u}_{1}, \ldots, \bar{u}_{r}\right\rangle, \quad \bar{q}_{2}=\left\langle\bar{u}_{r+1,-}, \bar{u}_{n}\right\rangle
$$

Now define $\partial_{1}: W(F) \rightarrow W(h)$ by $q \longleftrightarrow \bar{q}_{1}$
and similarly define ∂_{2} using \bar{q}_{2}.

$$
\text { (" } \left.1 \text { ss }+2^{m} \text { residue maps }\right)
$$

The inverse of $(i, j): W(h) \oplus W(h) \rightarrow W(F)$
is $\left(\partial_{1}, \partial_{2}\right): \omega(F) \rightarrow \omega(h) \oplus \omega(l)$
We can also use this to write

$$
W(F) \cong W(h)\left[C_{2}\right] \begin{gathered}
\text { (group } \\
\text { ring) }
\end{gathered}
$$

Where $W(l)$ is identifies with its image in $\omega(F)$ under i.

Under above hypotheses (ind ckertzz):
Prop $S_{i j} q=\left\langle u_{1}, \ldots, u_{-}\right\rangle$with $u_{i} \in U=R^{*}$.
Then q is isotropic over F
$\Longleftrightarrow \bar{q}=\left\langle\bar{u}_{1},-, \bar{u}\right\rangle$ is isotropic over k
Prod $(\Rightarrow) q(v)=0$ for $\sin v=(c, c) \neq 0$,
$C_{i} \in F$, not all 0 .
After multiplying v by some π^{m},
WMA each $c_{i} \in R$ and some $c_{i} \in U$.
So $\bar{q}(\bar{v})=0 \in h$ and $\bar{v} \neq 0 \in h$.
So \bar{q} is isotropic over k.
\Longleftarrow) Sine \bar{q} is regulars isotropic,

$$
\begin{aligned}
& \bar{q}=h \perp \bar{q}^{\prime} \longleftarrow<\text { dir } r \text {, can lift } \\
& \text { haperbicicplach } \quad \text { to a } \text { with entries in } U \text {. }
\end{aligned}
$$

So q aud $h \perp g^{\prime}$ have sane inge in

As a Conseguence, in this situction,
Theoren (Springe-) reg.esfif

Let $q=q_{1}, \perp \pi / q_{2}$ over F_{1} with q_{1}, q_{2} dingonal and lach endry a unit.
Then q is ansisoropic /F

$$
\begin{aligned}
& \bar{q}_{1} \bar{q}_{2} \text { are anisotropic } / h . \\
& \partial_{1}^{\prime \prime} \dot{q}^{\prime \prime} \partial_{2} q
\end{aligned}
$$

Hera $q=\left\langle u_{1}, u_{1}, \pi u_{1, n}, \neg \pi u_{s}\right\rangle \quad u_{i} u_{n-i n}$

$$
\bar{q}_{1}=\left\langle\bar{u}_{1}, \ldots \overline{u_{2}}\right\rangle, \bar{q}_{2}=\left\langle\bar{u}_{-n}, \ldots, \bar{u}_{s}\right\rangle .
$$

This veluce aucsodropp/F to

$$
\text { " } / k
$$

E_{x} if $F=Q_{p}$, then weire relual to checking anisotrogy/ Tp.
Equivilunt version of thin:
$q_{\text {q }}$ isotrgic $\Leftrightarrow \bar{q}_{1}$ or \bar{q}_{2} is isoderpic. well prove in this form.

Pf of the:
i) Sag \bar{q}_{i} isotropic $(i=1 \quad$ or $:=2)$,

By prev prop; q_{i} is isotropic: $q_{i}(v)=0$

$$
\left(\text { Here } q_{1}=\left\langle u_{1}, \ldots\right\rangle, q_{2}=\left\langle u_{-n}, u_{0}\right\rangle\right)
$$

So q is isotropic (using ($v, 0$) or ($0, v$ re repp.)
ii) Say q is isotropic. Also of vagule,

So $q \cong h \perp q^{\prime} . \quad \operatorname{din} \xi^{\prime}=\operatorname{din} q-2$.
So q, q^{\prime} represent the same est of $W(F)$.
Have $q^{\prime}=q_{1} \perp(\pi) q_{2}$. $\omega_{n} k g^{\prime}=\sigma_{1}^{\prime} \perp\langle\pi\rangle \xi_{2}^{\prime}$.
In $\omega(h) \oplus \omega(h),\left(\partial_{1}, \partial_{l}\right)(q)=\left(\partial_{1}, \partial_{2}\right)\left(q^{\prime}\right)$
$\left(\bar{q}_{11}, \bar{q}_{2}\right) \quad\left(\bar{q}_{1}^{\prime}, \bar{q}_{2}^{\prime}\right)$
So $\bar{q}_{i}, \bar{q}_{i}^{\prime}$ rep reset the san. elf of $W(k)$
But $d_{4} q^{\prime}<\operatorname{dim}_{11} q$

$$
\operatorname{din} \bar{q}_{1}^{\prime}+d m \bar{q}_{1}^{\prime} \quad \quad \quad \quad{ }^{\prime \prime} \bar{q}_{1}+d i=\bar{q}_{2}
$$

So dian $\bar{q}_{i}^{\prime}<$ dim \bar{q}_{i} for $i=\operatorname{lor} 2$. But $\bar{q}_{i}, \bar{q}_{i}^{\prime}$ give same classis (h), so differ by copies of h. So \bar{q}_{i} contains h, σ is isotopic.

Cor If chor $h \neq 2, u(F)=2 u(k)$.
Proof Let $n=u(h)$.
So \exists anciotronic of $\bar{\xi} / h$ of $d i n, n$ but even q.f. Th of dim $>n$ is isorboic? WTS same for F, with $2 n$. WMA \bar{q} diegonal. Liff to a diagal s.f of /F with entries in U. Then $q \perp\langle\pi q$ has dim $2 n / F$, t is anisotropic by the above the.
For (2)/F tike a F^{f}. q^{\prime} / F of dinsen.
WTS g^{\prime} isotropis. We hav

$$
2 n<d_{i n} q^{\prime}=\operatorname{din}_{1} d_{1}\left(q^{\prime}\right)+\operatorname{din}^{\prime} \partial_{2}\left(\xi^{\prime}\right)
$$

So $\operatorname{dim} \partial_{i}\left(q^{\prime}\right)>n$ for $i=1 \mathrm{or}$.
So this $\partial_{i}\left(q^{\prime}\right)$ is isotropic/h. By above then, g^{\prime} is isodrpia/F.

Cor If F is a fiat extension of Q_{p} or $\mathbb{F}_{p}(C \in 1)$ ane $p \neq 2$ then $u(F)=4$.

In Cor, F is an arbitron
non- archinelen to al fickle ($k \notin \mathbb{R}, \mathbb{C}$) of rus char $\neq 2$.
In fact Cor also holes if cher $l=2$ - a more involval proof due to Springe.

As another application of $u(F)=2 u(h)$:

$$
u\left(Q_{p}((f))\right)=8:
$$

Take $R=Q_{p} \mathbb{E} \in D \quad F=Q_{p}((\epsilon)), L=Q_{p}$

$$
u=4
$$

by cove

$$
\therefore u=8 \text {. }
$$

Sialch,

$$
\begin{aligned}
& u\left(\mathbb{F}_{p}((t))((s))\right)=8: \\
& R=\mathbb{F}_{p}((f))(s), F=\mathbb{F}_{p}((f))((s)), h=\mathbb{F}_{p}((f))
\end{aligned}
$$

Let F be a local file of res. chor=p$\neq 2$; so a finite extension of $\mathbb{F}_{p}\left((t)\right.$ o- of \mathbb{Q}_{p}

Let π be a uniformize; so $v(\pi)=1$.

$$
\left(\pi=t \text { for } \mathbb{F}_{q}(1+1) ; \pi=p \text { for } Q_{p}\right)
$$

We suv

$$
1 \rightarrow h^{x} / h^{x^{2}} \rightarrow F^{x} / F^{x^{2}} \rightarrow \mathbb{Z} / 2 \rightarrow 0
$$

s)
$\mathbb{Z} / 2$ since cher $l \neq 2,+h$ finite.

$$
\therefore\left|F x / F^{x^{2}}\right|=4 \quad \text { one so class: }[1]
$$

$$
\text { I. fling } \bar{u} \in k_{k}^{x}
$$

Four clares, rep by $1, u, \pi, 4 \pi\binom{$ no two }{ same class }
Key example:

$$
\begin{aligned}
\bar{u} \notin h^{x^{2}} & \Rightarrow \bar{u} \notin D(\langle 1\rangle) \text { over } h \\
& \Rightarrow\langle 1,-\bar{u}\rangle \text { anisotropic } / h \\
& \Rightarrow\langle-1, \bar{u}\rangle \\
& \Rightarrow q:=\langle 1,-u,-\pi, u \pi\rangle \text { anisotropic } / F
\end{aligned}
$$

by Springers the, since $\partial_{1}(\xi\rangle=\langle 1, \pi\rangle, \partial_{2}(\delta)=\langle-1, \bar{\pi}\rangle$.

Recall: up to isometry, the only anisotropic binary off. h is $\langle 1,-\bar{a}\rangle=x^{2}-\bar{u} y^{2}$
So $q=\langle 1,-4,-\pi, 4 \pi\rangle$ is the only anisotropic of /F of din 4 up to i Biometry. (hr Sparse $+u(h)=2$)
Here $q=$ nom form of $\left(\frac{G, \pi}{F}\right)$.
Recall: quaternion alg's are clasifide by their norm forms; and a quot. alg. is a dir algebra \Leftrightarrow the norm form is anisotropic. Conclusion:
$\left(\frac{u, \pi}{F}\right)$ is the unique quaternion division algebra over F.
The only other quat. alg. /F: $\therefore M_{2}(F)$.

Also vecall:
Quaternim algebves generate the 2 -torsim in the Braner group. So: $\operatorname{Br}(F)[2] \cong C / 2 \cong\{ \pm 1\}$.
split ckrs $\longrightarrow 1$
nor-split cla's $\longleftrightarrow-1$
Wrik $(a, b)_{F}= \pm 1$ if $\left(\frac{c, b}{F}\right) \longleftrightarrow \pm 1$ resp.
\ln partales,
"Hiblect syabol"; "qual ratic nom rasilue syns.1" $(u, \pi)_{F}=-1$ (mentional earlic ve Blocl-Kato $C_{i j}$)
From criteria for $\left(\frac{a, b}{F}\right)$ to be split, we have Hilleds critesi-

$$
(0, b)_{F}=\mid \Leftrightarrow\langle\xi b\rangle \text { reprasents } 1
$$

$\Longleftrightarrow a \in F$ is the nor-mof an elt of $F(\sqrt{b})$
In \# thy if consile $(a, b)_{F}$ for $F=Q_{p}$ write $(a, b) p$. (Load clas fiel thy)
Re quad ratic exten sions in \# thy:
Legendre syubll $\left(\frac{a}{p}\right)= \pm 1 \longleftrightarrow$ a is/lisuta a square If $a=p^{\alpha} x, b=p^{\beta} y, x, y \in U=\mathbb{Z}_{p}^{x}$ mod $P=c_{\text {pre }}^{\text {old }}$ then $(a, b)_{p}=(-1)^{\alpha \cdot \beta \cdot} \cdot \frac{p-1}{2}\left(\frac{x}{p}\right)^{\beta}\left(\frac{y}{p}\right)^{\alpha}\binom{C_{\text {an, }}, a_{p}, V / 1}{$, Exaccio 10}

We can also use the abourto fine $W(F)$:
Recall: For h a fink fill \mathbb{F}_{g} (era are)

Also rec.ll $W(F) \cong W(\mathbb{k})\left[C_{2}\right]$.
So get:

In each case: $|\omega(F)|=16$
Can also analyze $\hat{W}(F)$ and got a description:
$\mathbb{Z} \oplus(\mathbb{Z} / 2)^{3}, \mathbb{C} \oplus \mathbb{C} 4 \oplus \mathbb{Z}(2$, rap.
(Sen lan, $\mathrm{Ch} V 1$, Th $2.2(5,6)$)

Since $|W(F)|=16$, and sinai
$W(F) \stackrel{\text { bij }}{\longleftrightarrow}$ (isometry clissu of) anisotropic of. $/ F$.
Jexacth 16 anisotropic sit /F, including the O form (uptisonitr)

Prop. If $a, b \in U,\left(\frac{a, b}{F}\right)$ splits.
Pf. If $a_{1}, a_{2}, a_{3} \in U$,
then $\left\langle\bar{u}_{1}, \bar{u}_{2}, \bar{u}_{3}\right\rangle$ is isotropic $/ h$, So $\left\langle u_{1}, u_{2}, u_{3}\right\rangle \cdots \cdot / F$.
In p-racial. $\rangle\langle a, b,-1\rangle$ is isotopic $/ E$ so $1 \in D(\langle a, b\rangle)$, so $\left(\frac{a, b}{F}\right)$ splits

