Local and global fields, and local-global principles (LCP) Esp. Hasse-Minkowski: If q is a q.f. IQ, then gis isotropic/Q = gusotopic/R and Qp for ellp Global fields F: DEFinite Restansions of Q: # fields. 2) Finik extensions of Fp(t): global function fields. Deletind domain absolute Value discrete V = 1.1, on F= free R F Completing Fr DR DR. Del.don Ex m cluf clur clur EX. Rp > Zp > Zcp > Z (also archimeten abevel; not disur, vol.) Ex. R=Q

A key result for Colvis: (TT) V(TT)=1 Hensel's Lemma R clur, insmail ideal, $f(x) \in R(x), \propto eR, f(x) \in M,$ f'(x) & m. Then Jx eR st f(x) = 0 and $x \equiv x_0 (mdm)$. Pf is essectially to use Nertin's Method (New two-Rephen algorithm) to gether with Completeners to get Convergnce to a solution. Also perullel to a flato Implicit Fn Thm RC(1) ~ { here t => } 1-230x+0 2(x,t)=0

In particular, take 1=2, and cherk#2. ueU=Rx is asgure the his asgura. LTTEFX Con a la nis even. This leads to a map h*/h* >F*/F* as fillowsi Take a Square class in Like; pick a representation Ech* Choose a life: q eR=U cF× JJ ā ch* Send the given Square class in h*/hx2 to the square class of a in FMFR Well defined : For a different lift of a'la El (mod m), so a'la E Fri, So get the Same Class. Easy to check this is a injective hom, and inoge = 2 guar classes of 4/V (41=0) ندو. Get Inl'/1 F F F V 2/2-20 V is well Isection def mok 2 100 on 59, c/usu

As a result, we get a map

$$\lambda : \widehat{W}(\lambda) \longrightarrow \widehat{W}(F)$$

 $Also define
 $j : \widehat{W}(\lambda) \longrightarrow \widehat{W}(F)$
 $Also define
 $j : \widehat{W}(\lambda) \longrightarrow \widehat{W}(F)$
 $\leq q_{i_1, \dots, i_k}(q_i) \forall f_{j_1, \dots, i_k}(q_i) \forall f_{j_k}(q_i) \forall f_{j_k}(f_{j_k}(q_i) \forall f_{j_k}(q_i) \forall f_{j_k}(q_i)$$$

To prove the above claim re
(i,j):
$$\widehat{W}(\mathcal{A}) \oplus \widehat{W}(\mathcal{A}) \longrightarrow \widehat{W}(\mathcal{F})$$
:
note $(h, -h) \longrightarrow h_{-h}^{o}$
 $(\leq_{h}^{-1}, -\varsigma_{h}, -\varsigma_{h}) \longmapsto \leq_{h-1}^{-1} - \varsigma_{\pi} \rightarrow \sigma$
So $\mathbb{Z} \cdot (h, -k) = \ker(i,j)$; in how
 $(\widehat{W}(\mathcal{A}) \oplus \widehat{W}(\mathcal{A}))/\mathbb{Z} \cdot (h, -k) \rightarrow \widehat{W}(\mathcal{F})$.
 \widehat{U} at this is iso. STS Jinverse, g.
Define $g(") = \int (\leq_{h}^{-1}, 0)"$, neven
 $u\pi^{n}$ (10, $)$, n.ed
And extend to $$.
 U sing chain equivelace, can check
this is well defined, and is
a 2-sided inverse to f. So \cdots
 \sum_{i}
 \sum_{i} get the claim, + get
 $(i,j): W(\mathcal{A}) \oplus W(\mathcal{A}) \longrightarrow W(\mathcal{F})$.
We can also describe the inverse mop.

First: Each square clars has a representative of the form UCU or TT W, for ucU. So a veg g.d. g over F can be put in the form of = 8, 1(TT) on when $q_1 = \langle u_1, \dots, u_r \rangle, q_1 = \langle u_{r+1}, \dots, u_n \rangle.$ for some units U. EU = RX = FX Get q.f.'s over hi $\overline{q}_{1} = \langle \overline{u}_{1}, ..., \overline{u}_{n} \rangle, \quad \overline{q}_{2} = \langle \overline{u}_{rH_{1}-2}, \overline{u}_{n} \rangle,$ Now define 2; W(F) - W(h) by q - 9, and similarly define de using Fr. ("1 ss + 2ª vesiden maps) The inverse of (ij): W(L) OW(L) ->W(F) (∂_1, ∂_2) : $W(F) \longrightarrow W(k) \oplus W(k)$, S We can also use this to write $W(F) \cong W(k) [C_2] \xrightarrow{(group ring)}$ Where W(L) is identified with its Image in W(F) under é.

Under above hypotheses (ind cherhte): Krop Sigg= < u, ..., u) with u: eU=R*. Then: q is isotropic over F q=<u,-,u) is isotropic over h $Proof (=) \quad g(N) = 0 \quad \text{for Some } \mathcal{V}_{=}(C_{i,-}, c) \neq 0,$ CieF, not all O. After meltiplying v by some TTM, WMA Rach CEER and Some CEEU. So g(v)=Och and v=toch. So 7 is isotropse over h. (Since & is regulart isodropic, Z=h 1 g dinv-2, Can lift to a gover F hyperbolic place/h with entries in U. So gand h 1 g' have same inge in hyp.pl/F Viz. (h1 \overline{g}', O). So g = h 1 g' 150tropic.

Cor
$$If F$$
 is a finite extension
of Q_p or $fF_p(l(f))$ and $p \neq 2$
then $u(F) = 4$.

In (or, F is an a-bitmen
Non- archimelen load field (a #R.C)
of ves cher #2.
In fact: Cor also helds if check=2
In fact: Cor also helds if check=2
In fact: Cor also helds if check=2
As another proof due to Sprive.
As another spplication of
$$u(F) = 2u(A)$$
:
 $u(Qp((H))) = 8$:
Take $R = Qpl(F)$ $F = Qp((H), L = Qp$
 $u = 4$
 h_1 close
 $L(Fp((H))(so), F = Fp((H))((s)), h = Fp((H))$

Lot F be a local hide of res.
$$closp \neq 2$$
;
so a finite extension of $F_p(l+1) = 0$ of Q_p
So iso to $F_1((si))$; $q = p^{(s)} (-t \pi p, t = s^{s} = t)$
Lot π be a uniformize; so $v(\pi) = 1$.
 $(\pi = t f_0, \pi_1^{((1))}; \pi = p f_0, Q_p)$
We sro
 $l \rightarrow l^{*}/l^{*} \rightarrow f^{*}/f^{*} \rightarrow Z/2 \rightarrow 0$
So $Z/2$ since $che l \neq 2, th hide.$
 $i = l f^{*}/f^{*} | = 4$ one so char; $(i]$
 $ne non s_1 = char; (z)$
 $lifting uck$
Four classes, rep by $l_1 U_1 \pi_1, u \pi_1$ (no two a)
 key excended
 $i = t f(x)$ over h
 $i = (1, -i) = an iso drypic / h$
 $i = (1, -i) = 1, u \pi_1 = an iso drypic / f$
 $j = (1, -u, -\pi_1, u \pi_1) = (j) = (-1, i)$.

(4,TT) is the Unique quaternion (F) is the Unique quaternion division algebra over F. The only other quat.elg. IF is :- Mr(F).

Also recall:
Queternin elgebres generate the
2-torsin in the Brave group.
So: Br (F)[2] = Z/2 = Et1.
So: Br (F)[2] = Z/2 = Et1.
So: Br (F)[2] = Z/2 = Et1.
Non-split chis -1
Non-split chis -1
Urite (9,6) F = ±1 if (
$$\frac{25}{F}$$
) = 5±1 resp.
In perhalog equedratic non residue syndi
(u, Ti) F = -1
(mentioned earlie ve Block Kede Cig)
From Criteris for ($\frac{9}{F}$) to be split we have
(e,6) F = 1 = <955 represents 1
= 29 < 955 represents 1
= 29 < 655 represents 1
= 29 < 655 represents 1
= 29 < 2957 represents 1
= 29 < 255 represents 1
= 29 = (10 < 10 - F) to be split we have
Hillet criteria
(e, 5) P. (Local chos fill thg) Verinsp
Re guad ratic entersis in # Hg:
Legendre syndul ($\frac{9}{F}$) = ±1 = a isfient a squar
If $q = p^{2}x$, $b = p^{2}y$, $x_{iy} \in U = \mathbb{Z}_{p}^{2}$ (Len, ClayVI,
then ($q, 5$) P. (-1) $(p)^{2} (\frac{x}{P})^{2} (\frac{y}{P})^{2}$ (Len, ClayVI,
From ($q, 5$) $q = (-1)^{n} (p)^{2} (\frac{x}{P})^{2} (\frac{y}{P})^{2}$ (Len, ClayVI,

We can also use the church field
$$W(F)$$
:
Recall: For the a field ff_g (all and)
 $W(L) = \int Z/L(C_1) \approx (Z/Y)^2 \text{ as } gp$
if $g \equiv 1 \pmod{9}$
as ring $Z/Y = (\text{ or a } gp \cdots \text{ ring})^2$
 $ff = g \equiv 3 \pmod{9}$
Also recall $W(F) \equiv W(E) [(C_1),$
So pot:
 $W(F) \cong \int Z/L(C_1) \equiv (Z/E)^2 \text{ or } gp$
 $if g \equiv 1 \pmod{9}$
 $Z/Y = (C_1)^2 \equiv (Z/E)^2 \text{ or } gp$
 $if g \equiv 3 \pmod{9}$
 $In each case: $|W(F)| = 1/6$
Can also $gnalyze \hat{W}(F)$ and get
a description:
 $Z \oplus (Z/2)^3, Z \oplus Z/Y \oplus Z/2, rasg.$
 $(See Lan, Ch VI, T(2.2 (S, G).)$$