Recall: Given $=$ fire F,

- quad ratio forms /F $\operatorname{wow}(F), I(F), I^{n}(F)$
- csás/F $\longrightarrow \operatorname{Br}(F)$

$$
k_{2}^{M}(F)=K_{2}(F) / 2
$$

Can relate these objects
Via a commutative diegra-1

To generalize this:
Use that K_{2} is part of a collection of groups K_{n}, due to Milno-:
Define the \mathbb{N}-grable Z-algebra

$$
K_{*}^{M}(F)=T^{*}\left(F^{\star}\right) /\binom{a \otimes(1-a)}{1 \neq a \in F^{*}}
$$

Here, the $n^{\text {th }}$ gall piece $K_{n}^{M}(F)$ is the image of $T^{n}\left(F^{x}\right)$
(written edelitively): the malt is from \otimes.
So $K_{2}^{M}(F)$ is as above,

$$
K_{1}^{M}(F)=F^{x}, \quad K_{0}^{M}(F)=\mathbb{Z} .
$$

or vies as
Grothendiect grip of fad. v.s.i/F.
(For a ring R, take fin gen proj-modals R).

We had an iso

$$
\begin{aligned}
k_{2}(F) \stackrel{\sim}{\sim} & I^{2}(F)\left\langle I^{3}(F)\right. \\
{[a, b] \longmapsto } & \langle 1,-9-b, a b\rangle \\
& \langle 1,-a\rangle 0\langle 1,-b\rangle
\end{aligned}
$$

Can this be generalizes to $n \geq 2$?
Define $k_{n}(F)=K_{n}^{M}(F) / 2$.

For $a_{1}, \ldots, a_{n} \in F^{x}$, write
in $I^{n}(F)$

$$
\left\langle\left\langle a_{1}, \ldots, a_{n}\right\rangle\right\rangle:=\left\langle 1, a_{1}\right\rangle \otimes-\sim \otimes\left\langle 1, a_{n}\right\rangle
$$

" n-foll Pfister form'
So the dove map $\alpha: h_{2}(F) \rightarrow I^{2} / I^{3}$ takes $[a, b] \longmapsto \ll-a,-S \gg$.

By analogs with case $n=2$, define

$$
\begin{aligned}
\alpha_{n}: h_{n}(F) & \rightarrow I^{n}(F) / I^{n+1}(F) \\
{\left[a_{1},, a_{n}\right] } & \longrightarrow<-a_{1}, \ldots,-a_{n} \gg .
\end{aligned}
$$

Is this an iso?
Part of the Milnor Conjecture.
Ans: Yes. Proven by Orlon, Vishik, Voevodsk7.
The other port of the Milnor Conjecture: (re β) relates these groups to Galois cohomelosg.
Recall: Given a group T with an actin on on abelicu group A, we can detain group cohomology $H^{n}(\Gamma, A)$ Via co cycles and coboundaries. (For example, $H^{2}(\Gamma, A)=\left\{\begin{array}{l}\text { equiv, classic. of } \\ g \text { roup extensions of } \Gamma \text { by } A\end{array}\right\}$.)

Namely, first suppose. Γ is a finite group, with an action of Γ on A. Coll A a Γ-module.
Define the set of n-cochains to be $C^{n}(\Gamma, A)=\left\{\operatorname{mops} \Gamma^{n} \rightarrow A\right\}$

$$
\begin{aligned}
& \text { Given } f \in C^{n}(\Gamma, A) \text {, } \\
& \text { define af } \in C^{n+1}(\Gamma, A) b_{2} \\
& d f\left(\gamma_{1}, \ldots \gamma_{n+1}\right)=\gamma_{1} \cdot f\left(\gamma_{2}, \ldots, \gamma_{n+}\right) \\
& +\sum_{i=1}^{n}(-1)^{i} f\left(\gamma_{1}, \ldots, \gamma_{i-1}, \gamma_{i} \gamma_{i, 1}, \gamma_{i n}, \gamma_{m+1}\right) \\
& +(-1)^{n_{1}} f\left(\gamma_{1}, \gamma_{n}\right) \\
& \text { Given } f \in C^{n}(\Gamma, A) \text {, } \\
& \text { define db } \in C^{n+1}(\Gamma, A) b_{2}
\end{aligned}
$$

$\hat{\sim}_{\text {not nachos }}$

So get

$$
\xrightarrow{\text { So get }} \stackrel{d}{\rightarrow} C^{n-1}(\Gamma, A) \xrightarrow{d} C^{n}(\Gamma, A) \xrightarrow[\rightarrow]{d} C^{n+1}(\Gamma, A) \xrightarrow{d} \cdots
$$

and for every $n \geq 0$,

$$
d^{2}: C^{n}(\Gamma, A) \rightarrow C^{n+2}(T, A)
$$

is the O mop.

Let $Z^{n}(\Gamma, A)=\operatorname{ker}\left(\operatorname{di} C^{n} \rightarrow C^{n+1}\right)$;
Ul group of n-Cocycles;
and let $B^{n}(\Gamma, A)=\operatorname{in}\left(d: C^{n-1} \rightarrow C^{n}\right)$;
group of n-coboundaries.
Lat $H^{n}(\Gamma, A)=Z^{n}(\Gamma, A) / B^{n}(\Gamma, A)$,
the $n^{\text {th }}$ cohomology group.
Ex. $H^{\circ}(\Gamma, A)=A^{\Gamma}=\left\{a \in A \mid\right.$ a is $\left.f_{x=1} h, r\right\}$.
This constracti- parallels what is done in topology
In our applications, well wat to allow T to be a profinct groups

$$
\Gamma=\lim _{i} \Gamma_{i} \quad \begin{aligned}
& \text { finite } \\
& \text { grips }
\end{aligned}
$$

Ex. $\mathbb{Z}_{p}=\operatorname{lin} \mathbb{Z} p^{n}, p$-elis.

In girl, such a Γ has a profinite to poloyy
(wackest topology st. all $\Gamma \rightarrow \Gamma_{i}$ are cattanors). We require the action of Γ on $A \longleftarrow$ discrete to be continuous; and in $C^{n}(\Gamma, A)$, we require $f: \Gamma^{n} \rightarrow A$ to be continuous.

Say F is a fica, and lat $T=G_{a l}(f)$ be its absolute Galois grope Gal ($F^{\text {sep }} / F$).
Let A be an abulia group on which P acts. (A is then called a Galois modal.) Define the Galois colvomilgy group $H^{n}(F, A):=H^{n}(\Gamma, A)$.
$E x . A=\mathbb{Z}(2$. Then the on's actin on A is trivial, ane for any furl we can former $H^{n}(F, \mathbb{Z} / 2$). (Assmanchem $\neq 2$) Have: $H^{\circ}(F, \mathbb{Z}(2)=\mathbb{Z} / 2$

$$
\begin{aligned}
& H^{\prime}\left(F, Z(2)=F^{x} / F^{x^{2}}\right. \\
& H^{2}(F, \mathbb{U} / 2)=\operatorname{Br}(F)[2] .
\end{aligned}
$$

These are the same as $W(F) / I(F)$

$$
I(F) / I^{2}(F), I^{2}(F) / I^{3}(F) \text {, resp. }
$$

The rest of the Minor Conjectios sos:
For all n, get a gexilin from 2 to n : $B_{l(a C C 2)}$

$$
\begin{aligned}
& I^{n}(F) / I^{n+1}(F) \cong K_{n}^{M}(F) / 2 \cong H^{n}(F, \mathbb{Z} / 2)
\end{aligned}
$$

More gencoill; the Bloch -K to Congeners where we replace $m \cdot d 2$ by mod (and assume char $F \notin l$).

Above, regarding $H^{n}(F, Z(2)$, there's only the trivia action of $\Gamma=G a l(F)$ on $\mathbb{Z} / 2$. For $\mathbb{Z} l l$, there are nontrivial εc ions, if $l>2$.

Ex. Let $\mu_{l} \subset F^{\text {sep }}$ bethe group of the l-th roots of unity. As a group, $\mu_{e} \approx \mathbb{Z} / l$. But $\Gamma=\operatorname{Gl}(F)$ acts non-trivially on μ_{e} (antes $l=2$). We can take $H^{n}\left(F, \mu_{e}\right)$.
In particular, $H^{\prime}\left(F, \mu_{l}\right) \cong F^{x} /\left(F^{x}\right)^{l}$, the l-th per classes. $H^{2}\left(F, \mu_{l}\right)=\operatorname{Br}(F)[l]$.
Ex. For every $n \geq 0$, we can let T act on $\mathbb{Z} l e$ by the n-th power of the above action. Write $\mu_{l}^{\otimes n}$ for this Galois module. (Additive notation: $\mathbb{Z} / l(n)$.)

Coming back to the Block - Nato Conj:
For $i, 2 \geq 0$, there is a cap product $\operatorname{map} H^{i}(F, A) \otimes H^{i}(F, B) \rightarrow H^{i+j}(F, A \otimes B)$ The map $\partial: F^{x} \rightarrow F^{x} /\left(F^{x}\right)^{l} \cong H^{\prime}\left(F, \mu_{l}\right)$
induces a map
$K_{n}^{M}(F) \quad \operatorname{Cmap}_{\text {factors }}$
l
"Normresibe map"

$$
k_{n}^{M}(F) / l
$$

Bloch-Kato conj: This mag

$$
\left.K_{n}^{M}(F) / l \longrightarrow H^{n}(F) \mu_{l}^{\text {on }}\right)
$$

is an isomorphism.
Note: For $l=2$, this agrees with the Milu.r Conj.
Case of $n=0$ trivial. ($\mathbb{Z} / l \xrightarrow{i d} \mathbb{Z} l()$
Case of $n=1$: Follows from Hilbert 90
Case of $n=2$: Proven by Merkurjev-Suslin (1982)

General case: proven h, Voevedsty (2009) (with details by Post, Weibel)

- now of ter called the

Norm Re sidue Isomorphism Theorem.
Note: The name "norm residue map" Came from the Hilbert symbol in local class field theory, also called the "norm residue symbol." For a local field $F_{l} \mu_{l}$ (finite extension of $\left.\mathbb{R}_{p}, \mathbb{R}, \circ \mathbb{F}_{p}(x)\right)$)
this is a pairing on $F^{x}\left(F^{-}\right)^{l}$ into y^{\prime} that factors through $K_{2}^{M}(F) / l$.
Here $(a, b)=1 \Leftrightarrow a$ is a norm from $F(d / b)$.

Question: What about a generalization of the other part of Milnoris $C_{\text {ajectere, }}$ Concerning I^{n} / I^{n+n} ?
Still a big mystery.

Next fopic:
Local are grobal fields, and local-globed privicuples (LCP).
Esp. Hasse-Minkowsk:
If q is a of $/ Q$, then q is isotropic/ $Q \Leftrightarrow q$ isoteric/ $/ \mathbb{R}$ sel $/ \mathbb{Q}_{p}$ frallp.
Move generally; holes for ary globl fiell (a fincte extension of Q or of $F_{p}(x)$).
Recall backgroune, on loal +g global fills.
Global fids:
(1) Finit extensin of Q \# fieds.

the ving of $\longrightarrow \theta_{K}=K$ integes of $K, \quad U \cup$ | the intgral |
| :--- |
| clown of $a i n k$ |

the pains ideas
that contract to p

prime in $\mathbb{Z} \quad(p) \subset \mathbb{Z}$
For p prime, have lo al ring $\mathbb{Z}_{(p)} \subset \mathbb{Q}$.
T is a Dedekind domain
Noetherica integrally closed domain of Kcal dimension ice. every
non - O prince coleal is mail
So the localiktin $\mathbb{Z}_{(p)}$ is a local Del.dom.
This is equivdent to being a discrete valuation ring
Recall: A discrete valuation on a fine F is a map $V: F^{x} \rightarrow \mathbb{Z}$ st

$$
\begin{aligned}
& \operatorname{map} V i f, V(b), V(a+b) \geq \min (v(a), V(b)) . \\
& V(a b)=V(a)+V(b) .
\end{aligned}
$$

The valuation ring of V is $\left\{a \in F^{x} \mid v(a) \geq 0\right\} \cup\{0\}$,
ヘ A discrete valuation Ling. (dur)
Also write $v(0)=\infty$, for convenience. Vievel as a local Dedetiad domain, The mail idea of a dur R is principal.

$$
\begin{aligned}
M=\{a \in R \mid v(a)>0\} . R-m & =R^{x} \\
\sim(\pi), v(\pi)=\{1 . & =\{a \in R \mid v(a)=0\}
\end{aligned}
$$

In the care of $\mathbb{Z}_{(p)} \subset\left(\mathbb{Q}, m=\left(p_{\lambda}\right)\right.$
V is the p-alias voluatim: $\quad \hat{C}=\pi$
For a rotl \# $\alpha=p^{n} \frac{a}{b}$, with pta,

$$
v(\alpha)=n .
$$

The mail ideal is $p \mathbb{Z}_{(p)}$.
A discrete valuation $v \leadsto a$ abs.licte value $1 \cdot \%$.
To define, pick $c>1$ and defies

$$
|\alpha|_{v}=c^{-v(\alpha)}
$$

This ratifier $\mid \alpha+\beta)_{v} \leq \max \left(|\alpha|_{0},|\beta|_{0}\right), \quad|\alpha \beta|=|k| v\left(\left.\beta\right|_{v}\right.$
Strong Δ ingoutith "non-archiadean abrival".
Ex. For the piratic valuation on Q, take $c=P$;
so $\left|p^{n} \frac{a}{b}\right|_{p}=p^{-n}$. $\quad(p+a, b)$
Given a field F with a discratevaluation $v \leftrightarrow 1 \% v$, we can complete F wot 1%, and get a full F_{v} (just as we cooplete \mathbb{Q} wot 1.1 to get \mathbb{R}) usulabs. val. Ex. Complete Q wot $1.1_{p} ;$ gat Q_{p}.

$$
A_{\text {so }}: " \mathbb{Z} \text { ". } \frac{U}{\mathbb{Z}_{p}}
$$

Another sense of "completion":
Can complete a local ring R at its maximal ideal m as an inverse lint:

$$
\hat{R}_{\mu}=\lim R /_{\mu^{n}} .
$$

Do this with \& \&ur:
$E x . \quad \mathbb{Z}_{(p)}>(p) ; \quad \mathbb{Z}_{(p)} / p \mathbb{Z}_{(p)}^{n}=\mathbb{Z} / p \mathbb{Z}$,
R
So get $\mathbb{Z}_{\text {(p) }}=\lim _{\subset} \mathbb{Z} \mathbb{Z}=\mathbb{Z}_{p}$.
Get the sane result as baton. For a dur R,
$\lim _{s i} R m^{n}=v$-disc metric completion of R.
=: \hat{R}_{m}; this is a complete d.v.r.
frae $\left(\hat{R}_{m}\right)=F_{v}$, the completion of $F=$ fra R.
Can apply this to Q, \mathbb{Q}, and git

Similes if take $Q_{c} \subset K$, a \# Ale, can do this for a prime \mathcal{B}° over a prim (p) $<\mathbb{Z}$.
(2) Can als. d_{0} this with $F=\mathbb{F}_{p}(x)$ or a fint extensin. (global functionfials)

Ex. $\quad F=\mathbb{F}_{p}(x)=$ frac $(R), R=\mathbb{F}_{p}(x)$; $(x)<R$ is a prine ileal. Dadetin
Localizatio $R_{C x} \subset F$
Complations $\hat{R}_{(x)} \subset F_{x}$ donain

$$
\begin{aligned}
& \widehat{R}_{(x)} \subset \mathbb{F}_{x} \\
& u_{1} \\
& \left.\mathbb{F}_{p}(x) \subset \mathbb{F}_{p}(x)\right) \\
& c d v r \quad c d v f
\end{aligned}
$$

$$
d v a
$$

Similely for finite exten sions of $\mathbb{F}_{p}(x)$.
Will study quadratic forms over covf's, in particulan:

- Witt groups (orings)
- local-global principles

