Recall: Given $a, b \in F^{x}$ we can form the guat erncon algebra $A=\left(\frac{a, b}{F}\right)$, a csa. $\operatorname{dim}_{F} A=4 ;$ take subspace $V=\operatorname{span}\{i, 2\} \subset A$. On V, with basis $\{c, \alpha\}$ we have the q.f. $q=\langle r, b\rangle$.

$$
\begin{gathered}
V^{c}=(\alpha, \rho)=\alpha i+\beta_{j} \text { satisfies } \\
q(v)=a \alpha^{2}+b \beta^{2} \in F C A \\
V^{\prime \prime} \in A
\end{gathered}
$$

Move generally, given a gif. q on a v.s. V over F, we can fore an algebse $A=C(V, q)$ over F st $\forall v \in V \leq A, q(v)=v^{2}$

$$
\hat{F} \subseteq \hat{A}
$$

- the Clifford algebra. F

Is $A=C(U, \varepsilon)$ always a Cs?
Assur: No. But it's always a

$$
\operatorname{csga}, \quad A=A_{0} \oplus A
$$

$\hat{Q}_{\text {el2-grade }} ?_{d y} \hat{Q}_{\text {parts }}$
If $\operatorname{dim} q$ is even, then A is a caa. If din 8 is old, then A_{0} is a caa.
Just as equiv. Classes of Csa's/F form the Braver group, $\operatorname{Br}(F)$, equiv classes of csga's /F form the Braver - Wall grope, BW (F). Here, $\operatorname{Br}(F) \subseteq B W(F)$, and in fat $0 \rightarrow \operatorname{Br}(F) \rightarrow B W(F) \rightarrow Q(F) \rightarrow 0$ is exacts where $Q(F)$ is as before. Morkhlest Comm. dies, with except revs:

$$
\begin{aligned}
& \text { } \rightarrow I^{2}(F) \rightarrow W(F) \rightarrow W\left(F \mid / I^{2}(F) \rightarrow 0\right. \\
& \perp \gamma \operatorname{Lr} \rightarrow \operatorname{Br}(F) \rightarrow Q(F) \rightarrow Q(F) \rightarrow 0
\end{aligned}
$$

Here Γ and $\gamma=\Gamma / I^{2}(F)$ are given by taking the Clifford algebra.
Also:: $\operatorname{ker} \gamma=\operatorname{ker} \Gamma=I^{3}(F)$,
and $\quad 1 \mathrm{~m} \gamma=\operatorname{Br}(F)[2] \quad\left(s c_{i p}\right.$ of $\operatorname{Br}(f)$ gu b, guat alps)

$$
\text { So } I^{2}(F) / I^{3}(F) \cong \operatorname{Br}(F)[2) \text {. }
$$

To under stand the structure of $B W(F)$ in terms of $\operatorname{Br}(F)$ we se the sees.

$$
0 \rightarrow \operatorname{Br}(F) \rightarrow B W(F) \rightarrow Q(F) \rightarrow 0
$$

Re structure of $Q(F)$ recall

$$
\begin{aligned}
& \text { Re structure of } \\
& 1 \rightarrow F^{x} / F^{x^{2}} \rightarrow Q(F) \rightarrow \mathbb{2} \rightarrow 0 \\
& 2(F) \text { is of the form }
\end{aligned}
$$

and an elf $\xi \in Q(F)$ is of the form (e, d) with $e \in \mathbb{Z} / 2, d \in F^{x} / F^{x^{2}}$.
Con similarly de scribe an eft of $B W(F)$ by a pair (D, ξ), where $D \in \operatorname{Br}(F)$

$$
\text { and } \xi \in Q(F) \text {. }
$$

(See Lam, pp. $1 / 5-1 / 6$ for details.)

$$
\begin{aligned}
& \text { (h eel am, } p p . / 15=(e, d) \in Q(F) \text {, we can then } \\
& \text { Write, } 3=(, R \text { null as a triple }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Write, } J=(e, d) \in Q(F) \text {, we can then } \\
& \text { write an elf of } B W(F) \text { as a triple }(D, e, d) \text {. }
\end{aligned}
$$

We can then explicitly work out the malt las on BW(F) in these terns:
The (Lam, Chop V, Th 3,9)
$\operatorname{Give}(D, \xi),\left(D^{\prime}, \xi^{\prime}\right) \in \operatorname{BW}(F)$, when

$$
\begin{aligned}
& G \operatorname{lin}(D, \xi),(D, \xi), Z^{\prime}=\left(e^{\prime}, Q^{\prime}\right) \in Q(F), \\
& \left.D, D^{\prime} \in B r(F), \xi=(e, Q), \xi^{\prime}\right)=\left(D \cdot D^{\prime} \cdot\left(\underline{d}(1)^{\prime e^{\prime} d^{\prime}}\right) \xi \xi^{\prime}\right)
\end{aligned}
$$

$$
\begin{aligned}
& D, D^{\prime} \in B-(F), \xi=(e, d), \xi^{\prime}=\left(e, d \cdot\left(\frac{d,(1)^{e+e^{e}} d^{\prime}}{F}\right) \xi \xi^{\prime}\right) \\
& (D, \xi) \cdot\left(D^{\prime}, \xi^{\prime}\right)=\left(D \cdot D^{\prime} \cdot\left(\frac{1}{F}, \xi\right)^{-1}=\left(D^{-1} \cdot A, \xi^{-1}\right. \text { where }\right. \\
& \text { and }(D)
\end{aligned}
$$

ane $(D, \xi)^{-1}=\left(D^{-1} \cdot A, \xi^{-1}\right)$ where

$$
A=\left\{\begin{array}{cl}
\left(\frac{\alpha, Q}{F}\right) & \text { if } e=0 \\
1 & \text { if } e=1
\end{array}\right.
$$

Here we write $\operatorname{Br}(f)$ multiplication). (Recall: The group la on $Q(F)$ is give by: $(e, d) \cdot\left(c^{\prime}, d^{\prime}\right)=\left(e+e^{\prime},(-1)^{e e^{\prime}} d d^{\prime}\right)$)
A motivation for Clifford algebras: to associate to end rif. a css. But: un doit always get a caa, just a csgag A, depending on dime of To rand, this: veal if $d i n g$ is even then $A=C(\varepsilon)$ is a csa; otherwise, $A_{0}=C_{0}(\delta)$ is a css, where $\hat{A}=A_{0} \oplus A_{1}$, (grate pieces)

So: to ead If. q, a ssocicte a csai $C(\xi)= \begin{cases}C(s) & \text { if } d i-g \text { cs eun } \\ C_{0}(\delta) & \text { if } d i n g \text { is odd }\end{cases}$ Can view $c(\xi) \in \operatorname{Br}(R)$.
Because of the two ceres, $c: W(F) \rightarrow \operatorname{Br}(F)$ is not a hom; but it is on $I^{2}(F)$.
forms are $e^{v_{n}}$, so $c=\gamma=\Gamma$, is $c=C$ then.
Terminology for the class of $C(\delta), c(q)$: In Lami $C(\delta)$: Cliffore invariant of δ
$c(\xi)$: Witt invariant
Some others: $C(\xi):$ Cliffes afeesm of δ
c(g): Cliffeme invarion" :
A relatel invariant of a g.f. 8 :
s(gl: the Harse invarient of δ.
(Also callsit: Hesse-Witt inv arion,
Harx syabli, 2^{0} Stiafer- ω hitangy clers)
If $q=\left\langle a,-, q_{i}\right\rangle$, d.fin $s(q)=\pi\left(\frac{a_{i} a_{i}}{F}\right) \in \operatorname{Br}_{r}(F)$.

Using chain equivalence aud couputations involving iss of guaternconalgs, one can show

The (Lam Chap V, prop.3.18)
If q, q^{\prime} are isometric diagonal of f 's, then $s(q)=s\left(\xi^{\prime}\right) \leftarrow$ Br (F).

So we get a cruel de find map

This is not a group ham. But can modify to gat a group hoo:

\[

\]

(The verification uses the explicit form above of multi. on $B W(F)$.)
Ex $\quad q=\langle a, b\rangle$. Form of din 2. Here

$$
S(q)=\left(\frac{\varepsilon, b}{F}\right)
$$

In this example, $C(q)=\left\langle\frac{q_{i} b}{F}\right\rangle$ as a grade alg, and this is a Cs becuure din $\xi=2$ is even.

So here, $c(q)=s(q)$.
Ex. $q=\langle a\rangle, d_{i}=1$. The $c(\gamma)=F=s(\gamma)$.
More generally:
The (Lan, Chap.V, Prop 3.20)
Say din $q=n$.
If $n \equiv 10 \mathrm{or} 2 \bmod 8$, the $C(q)=S(q)$.
Otherwise, $c(\xi)=s(\xi)\left(\frac{-1, Q}{F}\right) \in \operatorname{Br}(F)$ where $a \in F^{x}$ depends on n mols:

$$
a= \begin{cases}-\operatorname{det}(\delta) & \text { if } n \equiv 3,4(\operatorname{mal}) \\ -1 & \text { if } n \equiv 5,6(\operatorname{col}) \\ \operatorname{det}(\delta) & \text { if } n \equiv 7,8(\sim) 8)\end{cases}
$$

The prose is explicit, and use induction on n. (8 cases)

Recall: Two biers qualndic forms $q=\langle a, b\rangle$ and $q^{\prime}=\left\langle a^{\prime}, s^{\prime}\right\rangle$ are isometric $\Leftrightarrow \operatorname{det} q=\operatorname{det} \xi^{\prime}$ and $\left(\frac{a, b}{F}\right) \cong\left(\frac{q^{\prime}, S^{\prime}}{F}\right)$.
Question: Does this generalize?
Above, $\left(\frac{a, b}{F}\right)=c(\delta)=s(\xi) \in \operatorname{Br}(F)$
What if ais not necesscail, binary?
The (Lam, Chop V, The 3.21)
If $\operatorname{din} q=\operatorname{lin} q^{\prime} \leq 3$ then TFAC:

1) $q \cong q^{\prime}$
2) $\operatorname{det} q=\operatorname{det} q^{\prime}$ and $c\left(\mathcal{\delta}^{\prime}\right)=c\left(\xi^{\prime}\right)$
3) dat $q=\operatorname{det} q^{\prime}$ add $s(q)=s\left(q^{\prime}\right)$.
$\operatorname{Re} p f:(1) \Rightarrow(2)$ (3) trivially.
(2) \Leftrightarrow (3) by above result relating $c(q), s(q)$
For (3) \Rightarrow (1), proof is explicit, using quaternion alg', + the fat that quat. alg's are iso \Leftrightarrow have isometric norm forms.

Using the about result then gat a classification of $\delta . f$. when u-invariant is small!

$$
\text { Thar }\left(C \operatorname{com}, \mathrm{Ch}_{y}, V, P_{\text {op }}{ }^{3.2 \sigma}\right)
$$

Suppose $u(F) \leq 4$. ie, every if /F of d in $=5$
Let $q_{1} q^{\prime}$ be p.fis over F. is is.tepic

$$
\text { Then: } \begin{aligned}
q \cong q^{\prime} \Leftrightarrow \operatorname{dim} q & =\operatorname{din} \xi^{\prime}, \\
\operatorname{dot} \xi & =\operatorname{dot} \xi^{\prime}, \\
\text { and } s(\delta) & =s\left(q^{\prime}\right) .
\end{aligned}
$$

Proof. (\Rightarrow) is clear.
Let $n=\operatorname{din} q=\operatorname{din}^{\prime}{ }^{\prime}$
Cassel: $d_{i n}=n \leq 3$. Doneby aboveveralt.
Case 2: $d i m=n \geq 4$. So $d i n q=\operatorname{din}^{\prime} \geq 4(F)$.
$\therefore q_{1} g^{\prime}$ are universal; so they represent 1 . Write $q \cong\langle 1\rangle \perp \varphi$, $q^{\prime} \cong\langle 1\rangle \perp \varphi^{\prime}$. So $\operatorname{din} \varphi=\operatorname{din} \varphi^{\prime}$ ane $\operatorname{det} \varphi=\operatorname{det} \varphi^{\prime}$, by these facts for $q_{1} g^{\prime}$. Since $\operatorname{dim} \varphi=\operatorname{din} \varphi^{\prime}<n$, by the inductive hypothesis, STS $s(\varphi)=s\left(\varphi^{\prime}\right)$.

WM $q=\langle a_{i,}, \underbrace{a_{y}, \ldots, a_{n}}_{\varphi}\rangle$. Then

$$
\begin{aligned}
s(\varepsilon)=\prod\left(\frac{a_{i}, a_{i}}{F}\right) & =\prod_{i=2}^{n}\left(\frac{1, a_{j}}{F}\right) s(\varphi) \\
& =\left(\frac{1, a_{2} \cdots a_{n}}{F}\right) s(\varphi) \\
& =\left(\frac{1, \operatorname{det} \varphi}{F}\right) s(\varphi) \in B-(F) .
\end{aligned}
$$

Similarly for $s\left(q^{\prime}\right)$. Bat $s(q)=s\left(g^{\prime}\right)$ and $\operatorname{det} \varphi=\operatorname{det} \varphi^{\prime}$. $\therefore \delta(\varphi)=s\left(\varphi^{\prime}\right)$.
So $\varphi \cong \varphi^{\prime}$ by the inductive hyp. thesis; + So $q \cong\langle 1\rangle \perp \varphi \cong\left\langle\cap \perp \varphi^{\prime} \cong q^{\prime}\right.$.

Some related topics:
Periodicity of Cliffule algis (ChV,Sq):
If $F=\mathbb{R}$ and δ is a regular δf, then $q \equiv\langle-1, \ldots,-1, \underbrace{1, \ldots, 1\rangle}_{b}$
For any F (of ${ }^{a}$ char $\neq 2$), if $\frac{1}{}$ is of this form wank $C^{a, b}=C(\xi)$, Clifford alg. of 8 .

Prop (Canc V, Prop 6.1):

$$
C^{a+n, b+n} \cong \hat{M}_{2^{n}}\left(C^{a, b}\right)
$$

Proof

$$
\begin{aligned}
C^{a+b+n+n} & =C^{a, b} \widehat{\otimes} C^{n, n} \\
& =C^{a, b} \widehat{\otimes}(n h) \\
& =C^{a, b} \widehat{\otimes} \hat{M}_{2^{n}}(F) \\
& =\hat{M}_{2^{-}}\left(C^{a, b}\right) .
\end{aligned}
$$

So to study $C^{3 b}$, wire reduce to studyin, $C^{9,0}, C^{0, b}$ for $a, b=0$
Also, $C^{a, b}$ deposes only on a, b mod 8 .
(See Lam, $\mathrm{Ch}_{\mathrm{p}} \mathrm{V}$, Prop 4.2)
U sing this, can express all $C^{a, b}$ in terns of $C^{10}, C^{20}, C^{0,1}, C^{0,2}$, and $\otimes \ldots \hat{M}_{2}$.
Here $C^{10}=C(\langle-1\rangle)=F\langle\sqrt{-1}\rangle$

$$
\begin{aligned}
& C^{30}=C(\langle-1,-1\rangle)=\left\langle\frac{-1,-1}{F}\right\rangle \\
& C^{0,1}=C(\langle,\rangle)=F\langle\sqrt{1}\rangle \\
& C^{0,2}=C(\langle 1,1\rangle)=\left\langle\frac{1,1}{F}\right\rangle .
\end{aligned}
$$

Egg. $C^{3,0} \cong C^{3,0} \hat{\otimes} C^{1,0} \cong C^{3,0} \otimes C^{0,1}$
See the chat on P. 123 of Lam foal cares.

Com position of guadraticforms $\binom{\left(c_{m}, a v\right.}{\$ 5}$,
Recall: Using norm forms on $F\left[J_{-1}\right]$ and on $\left(\frac{-1,-1}{F}\right)$, we saw:

- a product of two elements of the form $x_{1}^{2}+x_{2}^{2}$ is also of this form.
- a product of two elements of the form $x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}$ is also of this form.
More geneal? ?
Are giver $m, n>0$, is there a formula

$$
\left(x_{1}^{2}+\cdots+x_{n}^{2}\right)\left(y_{1}^{2}+\cdots+y_{n}^{2}\right)=z_{1}^{2}+\cdots+z_{n}^{2}
$$

where end z_{i} is a homogeneous bilinec firn in $\left(x_{1}, x_{n} ; y_{1, \ldots}, y_{n}\right)$? Using Cliffedalgs:
Tho (Lam, Chop V, th 5.11) [Radon]
Let $F=\mathbb{R}$, write $n=2^{c} n_{0}$ with n_{0} odd, and writ $C=4 a+b$ wit $0 \leq S \leq 3$.
When there is a formals ($*$) iff

$$
m \leq 8 a+2^{b} \quad \text { (E.5. ok if } m=n=8
$$

not if $m=n=16$)

Back to $I^{2}(F) / I^{3}(F)$.

$$
\begin{gathered}
S \downarrow \gamma \\
\operatorname{Br}(F)[2]
\end{gathered}
$$

Recall Br CFIC2] is generate by quaternion algebras $\left(\frac{a, b}{F}\right)$.
These satisfy:

1) Bimultipliantrity

$$
\left(\frac{a, b}{F}\right) \otimes\left(\frac{a^{\prime}, b}{F}\right)=\left(\frac{a a^{\prime}, b}{F}\right) \in \operatorname{Br}(F)[2]
$$

and simech with roles of a, b reversed
2) $\left(\frac{a_{1}-a}{F}\right)$ is trivia in $\operatorname{Br}(F 1[2]$
3) Symmetry in a, b
4) Elements are 2 -torsion.

Since $\gamma: I^{2} / I^{3} \rightarrow \operatorname{Br}_{r}(F)[2]$
is iss, the sene hold for I^{2} / I^{3}.
(Can also verify directly - see
$L_{\text {an, }} C_{\text {ap }}$ V, Prop. 6.5 (2).)

This suggests forming an abstract object with these proportion For this, take $F^{x} \otimes_{2} F^{x} ; g e h a \otimes b ;$ this satisfies (1) above (which is billiearth if with aldctivel?). Mod out by the subgroup gen by all ells $a \otimes(1-a)$. Get a goop $K_{2}(F)$. Write $[a, b]$ for the class of $a \otimes b$. To make 2-torsin, take the quotient $k_{2}(F):=K_{2}(F) / 2$
ie mod Squares (if waite maul 11_{7})
This turns out to be symmetric because in $K_{2}(F)$ it's antisymmetric:

So get a commutation diagram

Here Y, as before, is givenby taking the Clifford invariant, and is an isomorphism. α takes $[a, b)$ to $\langle 1,-a\rangle \otimes\langle 1,-b\rangle$

$$
\begin{gathered}
\text { " } \\
\langle 1,-a,-b, a b\rangle \\
\text { noratiormof }\left(\frac{a, b}{F}\right)
\end{gathered}
$$

β takes $[a, b]$ to $\left(\frac{a, b}{F}\right)$.
Her α is an iso
(see Lam, Clap V, than 6.7). The proof uses Chain equivelace and the tasse in variant $S(\varepsilon)$.
Since the diagram is Commutation, β is also an iso.
So $I^{2}(F) / I^{2}(F) \cong \operatorname{Br}(F)[2] \cong k_{2}(F)$
This describes both I^{2} / I^{3} and $\operatorname{Br}(F)[2]$, since $K_{2}(F)<a n$ be studice:

Ex. If F is $\mathrm{Sin}_{\mathrm{i}}$, $K_{2}(F)$ is trivia.
(Lam, Che, V, Ex, 6.14;
due to Steinberg.)
$E x \cdot K_{2}(\mathbb{Q})=\underset{p \text { prise }}{\oplus} A_{p}$
where. $A_{2}=\{ \pm t\}, A_{p}=(\mathbb{Q} /)^{x}$.
(Due to Tate.)
ode pan
This turns out to be equivalent to Quadratic Reciprocity in number theory! So this is somationer called "The Gauss, Tate Theorem."
$\operatorname{Re} K_{2}$: this is pat of a collection of groups K_{n}, due to Milno-. Using those, we can generalize the above.

