Recall: q a \%r. \rightarrow Clifford alp $A=C(V, 8)$
$=T(V) / I(\varepsilon)$; has $a / 2-g \cdot R_{i n g}$. $F, V \subseteq A$, $v^{2}=q(v)$ for $v \in V$.
$E_{x} V=F^{2}, b_{\text {e is }}\{i, j\}, q=\langle a, s\rangle, \operatorname{din} 2$.

$$
\begin{aligned}
& C(V, q)=\left(\frac{a, b}{F}\right), d_{n=4}=2 . \text { Gratings } \\
& C_{0}=F \oplus h F, C_{1}=i F \oplus 2 F .
\end{aligned}
$$

As a grade $a l$, work $\left\langle\frac{a, b}{F}\right\rangle$.

$$
C(V, q)=F[t] /\left(t^{2}-a\right) ; C_{0}=F \cdot 1, C_{1}=F \cdot t
$$

$$
\text { S. } \operatorname{din} C(v, g)=2=2^{\circ} \text { her. }
$$

Can use this gradin, to show that $\operatorname{din} C(48)=2^{n}$, when $n=\operatorname{din} V$ ((Asur: Ais)

Use grace \otimes of $2 / 2$-grable alga A, B :

$A \hat{\otimes} B$: as vs, sames $A_{\otimes B}$
Malt on hang delft:

$$
\begin{aligned}
& (a \otimes b) \cdot\left(a^{\prime} \otimes b^{\prime}\right)=(-1)^{2 l c^{\prime}} a a^{\prime} \otimes b b^{\prime}
\end{aligned}
$$

$$
\begin{aligned}
& \text { inteccengins }
\end{aligned}
$$

Can check: have natural how of gramps:

$$
C\left((y s) \oplus\left(v^{\prime}, q^{\prime}\right)\right) \rightarrow C\left(v_{1} s\right) \otimes C\left(v^{\prime} q^{\prime}\right)
$$

+ this is a sui (Lam, Chg $V, L \times 1.7)$
So if diegmalize $\sigma=\left\langle a_{1,}, a_{n}\right\rangle$

$$
=\left\langle a_{1}\right\rangle \perp \cdots \perp\left\langle a_{n}\right\rangle
$$

+ apply surf, + use $\operatorname{dim} C(F,\langle a\rangle)=2$, gat $\operatorname{din} C(V, \varepsilon) \geqslant \pi \operatorname{din} C\left(F,\left(\varepsilon_{i}\right)\right)=2^{n} \cdot \int$ So the alts $x_{1}^{e}-x_{i}^{e}$ are abiosis of $C(V, r)$.
Ba sis of $C_{0}(v, \delta)$: that with $\sum e_{i}$ even.
" " $C_{1}(v, s)$: odd.
Ex. Hal $\subset(h)=\hat{M}_{2}(F)$.
For $m=1, C(m h)=\hat{M}_{2}(F)^{\otimes m}$

$$
=: \hat{M}_{2 m}(F) \text {, grad; }
$$

with basis alts $E_{i j}, \partial E_{i j}=\left\{\begin{array}{cc}0 & i+2 \mathrm{evm} \\ 1 & i j \text { le }\end{array}\right.$
("checkerboard grating)
$(V, q) \longrightarrow(C, q)$, grave $d g$. (f $q=\langle a, b\rangle, \quad C(V, q)=\left\langle\frac{a, b}{p}\right\rangle$ as gr. alp;

$$
\begin{aligned}
& \text { as analf, quat.elj }\left(\frac{a, b}{F}\right) \\
& \text { (asa) }
\end{aligned}
$$

If $q=\langle a\rangle, C(v, \delta)=F(t) /\left(t^{2}-a\right)$ as grabe als; Comantatie, so ant centrat.
To remedy this: notion of
Central siapk groed algesor (Csge)

$$
[=" \text { super csa", scsa }]
$$

For this, defin grales cendralitic $\hat{C}_{A}(S)$, gan by homg elts c st $C S=(-1)^{\partial c) s} s c$ for all hiog sas.
Gut grove ceter $\hat{z}(A):=\hat{C}_{A}(A)$.
A is (grotu) Contral if $Z(A)=F$.
Graen idal: idal thatis a grale subspace (i.e, © of hano, poots)

If a grole ols A her a. proper gralal idals: Simpk groled als. If gr.als. A is cathel a siople: "central siopt grabe alg".

Get aualogs of res-lts on csa's with essentilly the s aro pooots:
Than (Lam, ChapiV, Th- 2.3)

1) A, B gr $F-a l g$,
$A^{\prime} \leq A, B^{\prime} \subseteq B$ gralal sub-aljis

$$
\Rightarrow \hat{C}_{A \hat{\theta} B}\left(A^{\prime} \hat{\theta} B^{\prime}\right)=\hat{C}_{A}\left(A^{\prime}\right) \hat{\otimes} \hat{C}_{B}\left(B^{\prime}\right)
$$

2) A is csga/F, B is sga/F
$\Rightarrow A \hat{\otimes} B$ is sga/F.
3) A, B csg. $/ F \Rightarrow$ so is $A \hat{\otimes} B$.

Also get:
Thm (Cam, $C_{\text {g }} V$, Th2.1)

$$
C(V, g) \text { io a } \operatorname{csg} \text { a } / F
$$

Pf by induction on $n=\operatorname{dim} V$.

$$
n=1: C\left(U, \varepsilon_{a}\right)=F\langle\sqrt{a}\rangle \text {. Check dinati, }
$$

Induation stg: use

$$
C\left(q \perp q^{\prime}\right)=C(q) \hat{\otimes} C\left(q^{\prime}\right)
$$

Can form "grabe Braner grop" from quio classes of csga's:
A, A^{\prime} equir if $A \hat{\otimes} \hat{E_{n e}}(v) \cong A^{\prime} \hat{\theta} \hat{E_{n}}\left(V^{\prime}\right)$.
Esci. cline \rightarrow group: inverie of cless of A
is cless of A^{*}, graled opposita alg:

$$
a^{*} \cdot b^{*}=(-1)^{\operatorname{Jad}}\left(b_{a}\right)^{*} \text {. }
$$

[this is a cga (rape cige) if A is.]
$\frac{\text { Brane- } \omega_{\text {all grop }} \text {, } B W(F) \text {. }}{1\left(C . J . c, \omega_{a l l}\right)}$
Natural incilusion $\operatorname{Br}(F) \stackrel{i}{\rightarrow} B W(F)$
by trinal gratin, on csa $A: A_{0}=A$

$$
A_{1}=0 .
$$

In fact, have s.es. (L com, er. IV, Ther.):

$$
0 \rightarrow \operatorname{Br}(F) \rightarrow B W(F) \rightarrow Q(F) \rightarrow 0
$$

Same group as befre, from g.f.s!
Recall: we had

$$
\begin{aligned}
& 1 \rightarrow F_{\text {su }}^{x} / F^{x^{2}} \rightarrow \underset{\text { sil }}{Q}(F) \rightarrow \underset{\text { sil }}{\mathbb{Z}}(2 \rightarrow 0 \\
& 0 \rightarrow I(F) / I^{-}(f) \rightarrow W(f) / I^{2}(f) \text { W }(f) /(f) \rightarrow 0
\end{aligned}
$$

Above, in fact we have a commanding. with exact rows:

$$
\begin{aligned}
& 0 \rightarrow I^{2}(F) \rightarrow \omega(F) \rightarrow \omega(F) / I^{2}(F) \rightarrow 0
\end{aligned}
$$

where Γ is induced by taking the class of the Clifford invariant, $+\gamma=\Gamma / I^{2}(F) \cdot A(s e$,
kor $\Gamma=k=\gamma=I^{3}(F)$.
To explain this:
/ ${ }^{\pi T}$ descris. $B u(F) \rightarrow Q(F)$.
$E l t s$ of Q (FA: (e, d) where $e \in \mathbb{Z} / 2=W(F) / T(F)$ and $d \in F^{*} / F^{x^{2}} \approx I(F) / I^{2}(F)$.
So goon \leqslant cage A our F, repoesunti, a clos $\therefore B L(F)$, wast to give a pain (3,2).
Here $e \in \mathbb{C} / 2$ is coles the type of A : either O (evan or 1 (ode).

To define the type:
Sy A is of even tipe ($e=0$) if A_{10} a csa (as an ungrobe als)

Otherom: ese tupe $(e=1)$.
$E_{x .} q=\langle a\rangle,\left(c_{y} \mid=F\langle\sqrt{a}\rangle\right)$,
csge but ant csej ed tipe.
Moregu'ly: S_{g} gis a g.f.f dim n.
Vir $C(\delta)$ as a cega. The twons ont:
$C(1$ is of even tipe $\Rightarrow n$ is even
(as is abmexis). Will sac this.
First, to understue the type better:
Let $A=A_{0} \oplus A$, be a cose, with
cater Z. The Z is a csge, with
graen, $Z=Z_{0} \oplus Z_{1}$, when $Z_{i}=Z \cap A$.
Hen $Z=F$ siece A i a coga.
S. $Z=F \oplus Z_{1} . \quad S_{4 \text { rpox }} A_{1} \neq 0 ; A \neq A$.

Can show t as ungo.en ar

1) $Z=0 \Leftrightarrow A$ is a csc (earn)

य $Z_{1} \neq 0 \Longleftrightarrow$ A. is a cs.
(See Lan, Ch Cu, Th 3.4)
So $A \underset{\substack{\text { of } \\ z_{1}=0 \\ z_{y}(1)}}{\substack{\text { ing }}}$
So A of le tape $\leftrightarrow Z_{1} \neq 0$

$$
\Leftrightarrow A_{0} \text { is a cal }
$$

So either A o. A. $s_{s}^{b, c(4)}$ cs
but mot both; coorcons to even a ole cases.
For $B W(F) \longrightarrow Q(F)$
above given, the tripe. Re 2:
Take a csga $A=A_{0} \oplus A_{1}$.
If A is of even type ar $A_{1}=0$
(ie. $A=A$, a cora wine as egg in dago)
take $d=1$, trivial squad class.

Othewise: (Can, $C h$ Nu, Th 3.8, 3.6)

$$
C_{A}\left(A_{0}\right)=F \oplus F_{z}
$$

for sime $z \in A$ st $z^{2} \in F^{x}$, where
i) if A of even trpe ($\left.\alpha \vec{A}_{1} \neq 0\right)$, can the $z \in Z\left(A_{0}\right)$;
ii) if A of ole tipe, canterazc Z_{1}.

In each case, z is umises up to mult 4 F F^{x}.
In either cax, teds $d=z^{2} \in F^{*} / F^{x^{2}}$
So $\forall A$, have on alt $d^{\prime \prime=} \in(A) F^{\prime \prime} / F^{*}$.
Now difin $B \omega(F) \rightarrow Q(F)$

$$
\langle A\rangle \mapsto(e, d) .
$$

Can chack: This is a wall derf. group hom (Lan, Ch V, , Th 4.3). Moreoser, it: sur jeatra. Als: the rastritest to $\operatorname{Br}(F) \leq B U(F)$ is trivicl (imacelda); in fact, $\operatorname{Br}(F)$ is the full kerad. So gut ses.

$$
\binom{\text { Lanius }}{\text { th } 4.4} 0 \rightarrow \operatorname{Br}(F) \rightarrow \operatorname{Bu}(F) \rightarrow Q(F) \rightarrow 0
$$

Cuming back to C liffaed alg's $C(\xi)$ ass.c. to g.f.'s g :
$S_{\text {ay }}$ dia $i=n$; diagmlick, take o-kng. basis $e_{1} \ldots, e_{n}$. Lat $z=e_{1} \cdots e_{n} \in(q)$. i) If n oll, $\operatorname{deg} z=1 \in \mathbb{Z} / 2$, ad (use
 $\Rightarrow C(\xi)$ of olo tip. $0 * \quad ? \neq 0$ ci) If n even, dag $z=0 \in \mathbb{Z} / 2$, and z anti comantes with all $e_{i,}+$ so commtes win all $e_{i} e_{2}$. So $F^{z} Z \in Z\left(C_{0}^{(s))}\right.$ So $C_{0}(g)$ is not a csa/F; so $C(s)$ not old tupe; so weve tipe.

 This describas the tupe e^{e} of $C(8)$. What aboa $\alpha=\delta(A)$ of $A=(q)$, interne of q ?

$$
F^{2} / F^{x^{2}} \text { n(n-1) introliclion }
$$

Ans: It's det $=q:=(-1)^{\frac{n(n-1)}{2}}$ ditq. $E \cdot s_{2}$ conpotation usin, $z=R-e_{n}$ dbove. See Lam Clap V, Th 2.3.

Recell: Wire Construafing:

$$
\begin{aligned}
& 0 \rightarrow I^{2}(F) \rightarrow \omega(F) \rightarrow \omega(F) / I^{2}(F) \rightarrow 0
\end{aligned}
$$

Wh hov. The rous; takin, Cliffas alj; defias, a mop $\hat{\omega}(F) \rightarrow B \omega(F)$.
Hypurbolic forms are in the kerad, becange $C(h)=\hat{M}_{2}(F)$, trivis \therefore Bu) (Fl So get $\Gamma: \omega(F) \rightarrow B \omega(F L$.
This is a groop hom, belausi

$$
C\left(q+q^{\prime}\right) \cong C(q) \hat{\theta} C\left(q^{\prime}\right) .
$$

Can chact this diej rom comontes:

$$
\begin{aligned}
& \omega(F) \rightarrow \omega(F) / I^{2}(F) \\
& \downarrow \Gamma \quad S \downarrow f \ll \underbrace{}_{\substack{\text { the is. } \\
\text { fani- }}} \\
& B W(F) \longrightarrow Q(F)
\end{aligned}
$$

S. asder $\Gamma, I^{2}(F)=\operatorname{ker}\left(W(F) \rightarrow W(F) / I_{I^{2}(F)}\right)$

$$
\text { meps t } \operatorname{Br}(F)=k_{0}(B \omega(F) \rightarrow Q(F))
$$

So gst Comm. diog. wim exact ras:
as assente
In particular: (f 8 is a g.f. is $T^{2}(f)$ the $C(g)$ is concentratel in dyore 0 , f is a csa.

$$
\begin{aligned}
\text { Ex. Let } b & =\langle 1,-9-b, a b\rangle \\
& =a, c m \text { fom of }(a, b
\end{aligned}
$$

$$
=\text { rorm fom of }\left(\frac{a, b}{F}\right) \text {. }
$$

What is $\Gamma(s)$?

$$
\text { Shat is }(\varepsilon) \text { i.e. clas. of } C\left(\frac{1}{}\right) \text { : } B W(F) \text {) }
$$

Ans: $A=\left(\frac{a, b}{F}\right)$, cse, concentroted in deg 0 . \quad wh,? Resom:

$$
\begin{aligned}
& q=\langle 1,-a\rangle \otimes\langle 1,-b\rangle \in I^{2}(F) \\
& \text { so } \Gamma(q)=\gamma(q) \in B r(F) \subseteq B G(F) .
\end{aligned}
$$

Why is it $\left(\frac{a, b}{F}\right)$? Follows from:

$$
\Gamma(s)=\gamma(\delta)=\left(\frac{-a b,-c c}{F}\right) \in B_{-}(F)
$$

$$
\begin{aligned}
& 0 \rightarrow I^{2}(F) \rightarrow \omega(F) \rightarrow \omega(F) / I^{2}(F) \rightarrow 0
\end{aligned}
$$

Note heor:

$$
\begin{aligned}
& \Gamma(\langle a, b\rangle)=\left\langle\frac{a, b}{F}\right\rangle \text {, with ham } \\
& \text { triuid } \\
& \text { grading } \\
& \Gamma(\langle 1,-a,-, a b\rangle)=\left(\frac{q, j}{F}\right), \begin{array}{c}
\text { withtarics } \\
\text { groli., }
\end{array}
\end{aligned}
$$

Recall! As a group, $I(F)$ is gen by forms $\langle 1,-a\rangle$. So $I^{2}(F)$ is

$$
\langle 1,-a\rangle \otimes\langle 1,-b\rangle=\langle 1,-a,-b,-4\rangle .
$$

So: $\gamma\left(I^{2}(F)\right)$ is gen by quateraion alys. Recall: these are of orler 2 in $B r(F)$ (ortricid)
$S_{0}: \operatorname{lm} \gamma \subseteq \operatorname{Br}(F)[2]$
Infict, Mertwjer rhowal:
the quaternion alg's gaeacte Br (Filid.
So: image $\gamma=\operatorname{Br}(F)[2)$
What about ker γ ? Answ: $I^{3}(F)$.
Easy inclusion:
$P_{\text {ank }} I^{3}(F) \subseteq$ ked.
I.e. If $q \in I^{3}(F), \quad C(\xi)$ is trivina is $B_{F}(F l$

Proff $I^{3}(F)$ is gen by ett of K.

$$
\text { S. } I^{3}(F) \subseteq k=\gamma .
$$

Morkujev shoue \geq, sa: =.
So: $\gamma: I^{2}(F) \rightarrow \operatorname{Br}(F)$ indices an iso $I^{2}(F) / I^{3}(F) \xrightarrow{\sim} B_{r}(F)[(2)$.
So havi

$$
\begin{aligned}
& W(F) / I(F) \cong Z / 2 \\
& I^{2}(F) / I^{2}(F) \cong F^{x} / F^{x} \\
& I^{2}(F) / I^{2}(F) \equiv \operatorname{Br}(F)[2]
\end{aligned}
$$

Gaced pottern?

$$
\begin{aligned}
& \langle 1,-a\rangle \otimes\langle 1,-b\rangle \otimes\langle b,-c\rangle \\
& =\langle 1,-q,-b,-c, a b, a c, b c,-a b c\rangle \\
& =\langle 1,-a,-b, a b\rangle-\langle c,-c,--b, c, b\rangle
\end{aligned}
$$

$$
\begin{aligned}
& \left(\frac{a, b}{F}\right) \quad\left(\frac{c^{2}, c^{2} b}{f}\right)=\left(\frac{c, b}{f}\right) \\
& =0 \in \operatorname{Br}(f) \text {. }
\end{aligned}
$$

