- 1. a) For which primes p is there a $\sqrt{-1}$ in \mathbb{Z}_p ? For the smallest such p, describe this element explicitly.
- b) More generally, given a positive integer n, for which primes p is there a primitive n-th root of unity in \mathbb{Z}_p ?
- 2. For each of the following local rings, is the completion an integral domain? a discrete valuation ring? a ring that is isomorphic to k[[x]] for some field k? For the last of these, when the answer is yes, try to find an explicit isomorphism.
 - a) $\mathbb{Z}_{(p)}$
 - b) $\mathbb{R}[x]_{(x^2+1)}$
 - c) $(\mathbb{Q}[x,y]/(y^2-x^3))_{(x,y)}$
 - d) $(\mathbb{Q}[x,y]/(y^2-x^3-x^2))_{(x,y)}$
 - e) $(\mathbb{Q}[x,y]/(x^4+y^4-1))_{(x-1,y)}$
 - f) $\mathbb{Z}[x]_{(x)}$
 - g) $\mathbb{Z}[x]_{(2)}$
 - h) $\mathbb{C}[x,y]_{(x,y)}$
- 3. a) Suppose that p, p' are distinct prime numbers. Can the fields \mathbb{Q}_p and $\mathbb{Q}_{p'}$ be isomorphic?
- b) Let K be a finite extension of \mathbb{Q} , and let $\mathfrak{p} \subset \mathcal{O}_K$ be a prime lying over the rational prime p. Under what circumstances is the natural map $\mathbb{Q}_p \to K_{\mathfrak{p}}$ an isomorphism? (Here $K_{\mathfrak{p}}$ is the \mathfrak{p} -adic completion of K.)
- 4. Find an explicit ring isomorphism $W_3(\mathbb{F}_2) \to \mathbb{Z}/8\mathbb{Z}$.
- 5. Let R be a Noetherian domain, and let \mathfrak{p} be a non-zero prime ideal of R. Let $R_{\mathfrak{p}}$ be the local ring of R at \mathfrak{p} . Let $\hat{R}_{\mathfrak{p}}$ be the \mathfrak{p} -adic completion of R, viz. $\lim_{\leftarrow} R/\mathfrak{p}^n$.
 - a) Show that if \mathfrak{p} is maximal, then there is a natural inclusion $R_{\mathfrak{p}} \hookrightarrow \hat{R}_{\mathfrak{p}}$.
- b) Show that this conclusion does not necessarily hold for more general prime ideals \mathfrak{p} . [Hint: Try R = k[x, y] and $\mathfrak{p} = (x) \subset R$. What is $\hat{R}_{\mathfrak{p}}$? Is y a unit in $\hat{R}_{\mathfrak{p}}$?]
- c) What is the relationship between $R_{\mathfrak{p}}$ and its completion with respect to the ideal $\mathfrak{p}R_{\mathfrak{p}}$?
- 6. a) Use Hensel's Lemma to show that there is a unique formal power series $F(t) = a_1t + a_2t^2 + \cdots + (a_i \in \mathbb{R})$ such that $3F(t)^2 + F(t)e^t + \sin t = 0$. Find the first few coefficients a_i .
- b) Show that the power series F(t) has a positive radius of convergence. (Hint: Use an appropriate version of the Implicit Function Theorem.)