Problem Set \#5

1. a) Which of the following elements lie in $\mathbb{F}_{3}((t))$? For each one that does, find this element explicitly, i.e. in the form $\sum_{i=n}^{\infty} a_{i} t^{i}$, where $n \in \mathbb{Z}$ and each $a_{i} \in \mathbb{F}_{3}$.

$$
\frac{1+t^{3}}{t^{2}}, \frac{1}{1-t}, \sqrt{1+t}, \sqrt{t}, \sqrt{2+t}
$$

b) Which of the following elements lie in \mathbb{Q}_{3} ? For each one that does, find this element explicitly, i.e. in the form $\sum_{i=n}^{\infty} a_{i} 3^{i}$, where $n \in \mathbb{Z}$ and each $a_{i} \in \mathbb{Z}$. If you can, write the element in a form so that each $a_{i} \in\{0,1,2\}$.

$$
\frac{41}{9},-\frac{1}{2}, \frac{1}{2}, \sqrt{7}, \sqrt{2}, \sqrt{3}
$$

c) Prove that $\left(\mathbb{Z}_{2}^{\times}\right)^{2}=\left\{a \in \mathbb{Z}_{2} \mid a \equiv 1(\bmod 8)\right\}$. [Hint: Strong Hensel's Lemma.]
2. a) Find all anisotropic quadratic forms over $\mathbb{F}_{3}((t))$ up to equivalence.
b) Which of these forms remain anisotropic over $\mathbb{F}_{9}((t))$? Which of them become isometric to each other over $\mathbb{F}_{9}((t))$?
c) Redo part (b) with $\mathbb{F}_{3}((\sqrt{t}))$ instead of $\mathbb{F}_{9}((t))$.
3. Consider the following quadratic forms over \mathbb{Q} :

$$
q_{1}=\langle 1,1,1,-1\rangle, q_{2}=\langle 1,1,1,-7\rangle, q_{3}=\langle 1,1,1,1,1\rangle .
$$

a) For each i, determine whether the form q_{i} is isotropic over \mathbb{Q}.
b) For each i, find all the completions of $\mathbb{Q}\left(i . e . ~ \mathbb{Q}_{p}\right.$ or $\left.\mathbb{R}\right)$ over which q_{i} is isotropic. Does your answer, in conjunction with your answer to part (a), agree with Hasse-Minkowski?
4. Let q be a quadratic form over a global field F, and let Ω be the set of (equivalence classes of) non-trivial absolute values on F.
a) Prove that q is hyperbolic over F if and only if it is hyperbolic over F_{v} for all $v \in \Omega$.
b) Let i_{W} denote the Witt index of a quadratic form, and for $v \in \Omega$ let q_{v} denote q viewed as a form over F_{v}. Prove that $i_{W}(q)=\min _{v \in \Omega} i_{W}\left(q_{v}\right)$.
5. Let k be a field and let $K=k((t))$, under the t-adic metric. Let $R_{1}=k[[t]][x]$, $R_{2}=k[x][[t]], R_{3}=k[[x, t]]$, and $R_{4}=K[[x]]$.
a) Show that $R_{1} \subset R_{2} \subset R_{3} \subset R_{4}$, and that each of these inclusions is strict.
b) Regard elements of R_{1}, R_{2}, R_{3} as elements of R_{4}, i.e. as power series that can be viewed as "Taylor expansions" about the origin in the x-line over the complete field K. Show that every element of R_{1} (but not every element of R_{2}) converges for all $x \in K$; that every element of R_{2} (but not every element of R_{3}) converges for all x with $|x|_{t} \leq 1$; and that every element of R_{3} (but not every element of R_{4}) converges for all x with $|x|_{t}<1$. For which values of x in K do all the elements of R_{4} converge?

