1. Let M be the $n \times n$ matrix over $\mathbb{Z}\left[X_{1}, \ldots, X_{n}\right]$ whose (i, j) entry is X_{i}^{j-1}.
a) Show that the determinant of M is equal to $\prod_{i>j}\left(X_{i}-X_{j}\right)$. [Hint: Show that $X_{i}-X_{j}$ divides the determinant for all $i<j$, and consider the degrees of the polynomials.]
b) Deduce that if z_{1}, \ldots, z_{n} are distinct elements of a field L, then the vectors $v_{i}:=$ $\left(1, z_{i}, \ldots, z_{i}^{n-1}\right)$, for $i=1, \ldots, n$, are linearly independent in L^{n}.
c) Let $\beta, z \in L^{\times}$be such that $1, z, \ldots, z^{n-1}$ are distinct, and let N be the $n \times n$ diagonal matrix over L with diagonal entries $\beta, \beta z, \beta z^{2}, \ldots, \beta z^{n-1}$. Show that the matrices $I, N, N^{2}, \ldots, N^{n-1}$ are linearly independent. [Hint: Use (b).]
d) Let $a \in L^{\times}$and let $M=\left(m_{i j}\right)$ be the $n \times n$ matrix over L with $m_{i, i+1}=1$ for $1 \leq i<n ; m_{n, 1}=a$; and $m_{i j}=0$ otherwise. Show that the (i, j) entry of M^{r} is non-zero if and only if $j \equiv i+r(\bmod n)$. Deduce that if $\sum_{i, j=1}^{n} c_{i j} M^{i} N^{j}=0$ for some choice of n^{2} elements $c_{i j} \in L^{\times}$, then the matrices $S_{i}:=\sum_{j=1}^{n} c_{i j} M^{i} N^{j}$ are equal to 0 for all $i=1, \ldots, n$. [Hint: Which entries of S_{i} can be non-zero?]
2. Let K be a field that contains a primitive n-th root of unity ζ. Let $a, b \in K^{\times}$, and let $\beta \in L:=\bar{K}$ be an n-th root of b in the algebraic closure (so $\beta \in L^{\times}$). Consider the K-algebra A with generators u, v and relations $u^{n}=a, v^{n}=b, u v=\zeta v u$.
a) Let M, N be the $n \times n$ matrices over L given in parts (c),(d) of problem 1 , with $z=\zeta$. Show that $M^{n}=a I, N^{n}=b I$, and $M N=\zeta N M$. (Here I is the $n \times n$ identity matrix.) Use this to find a surjective K-algebra homomorphism h from A to the K-algebra $A^{\prime} \subseteq M_{n}(\bar{K})$ that is generated by M, N.
b) Show that for each $i=1, \ldots, n$, the n matrices $M^{i} N^{j}$ (for $j=1, \ldots, n$) are linearly independent. Then deduce that the n^{2} matrices $M^{i} N^{j}$ (for $i, j=1, \ldots, n$) are linearly independent. [Hint: First use 1(c); then use 1(d).]
c) Find the dimensions of A and A^{\prime} over K, and then show that $h: A \rightarrow A^{\prime}$ is an isomorphism of K-algebras.
d) Show that A^{\prime} is a simple K-algebra. [Hint: Show that $A^{\prime} \otimes_{K} L$ is isomorphic to $M_{n}(L)$, and then consider $I \otimes_{K} L$ for any ideal $\left.I \subset A^{\prime}.\right]$
e) Deduce that A is a central simple algebra over K. [Hint: Show that A^{\prime} is central, by considering the center of the tensor product $A^{\prime} \otimes_{K} L$.]
f) What does this say if $n=2$?
3. Let A be a central simple algebra over F, and let E be a field that contains F and is contained in A.
a) Show that the centralizer $C_{A}(E)$ contains E, and is an E-algebra.
b) Show that $\operatorname{dim}_{F}\left(C_{A}(E)\right)=\operatorname{dim}_{E}\left(C_{A}(E)\right)[E: F]$.
c) Deduce that $[E: F$] divides the degree of the F-algebra A, with equality if and only if $C_{A}(E)=E$. [Hint: What is $\operatorname{dim}_{F}(E) \cdot \operatorname{dim}_{F}\left(C_{A}(E)\right)$?]
d) Show that if $[E: F]$ is equal to the degree of A, then E is a maximal subfield of A (i.e. E is not strictly contained in any other field E^{\prime} with $F \subseteq E^{\prime} \subseteq A$).
e) Show that if A is a division algebra over F then the converse of (d) holds. [Hint: If not, show there exists $a \in C_{A}(E)$ that does not lie in E, and consider $E(a) \subseteq A$.]
4. a) Let D be a non-commutative division ring that is also a finite dimensional \mathbb{R} algebra. Show that the center must be \mathbb{R}, and hence D is a (central) division algebra over \mathbb{R}. [Hint: If not, D is a non-trivial central simple algebra over the field $Z(D)$. What can that field be?]
b) Let E be a maximal subfield of the \mathbb{R}-division algebra D. Show that $E \cong \mathbb{C}$ and that the degree of D over \mathbb{R} is 2 . Deduce that D is a quaternion algebra over \mathbb{R}.
c) Conclude that $\operatorname{Br}(\mathbb{R}) \cong \mathbb{Z} / 2 \mathbb{Z}$. (This proves a theorem due to Frobenius.)
