Due Wed., March 16, 2020, in class.

1. Let k be a field of characteristic unequal to 2 . Let $F=k((t))$ and $R=k[[t]]$.
a) Let f be an element of R with constant term c. Show that f is a unit in the ring R if and only if $c \neq 0$. Also show that if $c=1$ then f is a square in R. [Hint: Taylor series for $(1+x)^{1 / 2}$.] Deduce that if $c \neq 0$, then f is a square in R (and in F) if and only if $c \in k^{\times 2}$.
b) Let $q=\left\langle a_{1}, \ldots, a_{n}\right\rangle$ with $a_{i} \in R^{\times}$, the group of units in R. Show that if q is isotropic over F then $q(x)=0$ for some $x=\left(x_{1}, \ldots, x_{n}\right) \in R^{n}$ that does not lie in $t R^{n}$.
c) In (b), write $a_{i}=c_{i, 0}+c_{i, 1} t+c_{i, 2} t^{2}+\cdots$ with $c_{i, j} \in k$, and write $\bar{q}=\left\langle c_{1,0}, \ldots, c_{n, 0}\right\rangle$. Show that if q is isotropic over F then \bar{q} is isotropic over k. [Hint: Use part (b) and then reduce $\bmod (t)$.]
d) Prove the converse of part (c). [Hint: Use part (a).]
2. In this problem, we retain the notation of problem 1.
a) Show that every regular quadratic form over F is equivalent to a quadratic form $q_{1} \perp t q_{2}$ for some $q_{1}=\left\langle a_{1}, \ldots, a_{r}\right\rangle$ and some $q_{2}=\left\langle a_{r+1}, \ldots, a_{n}\right\rangle$, where each $a_{i} \in R^{\times}$. Show moreover that if \bar{q}_{1} or \bar{q}_{2} is isotropic, then so is q. [Hint: Use problem 1(d).]
b) Prove the converse of the last part of (a). [Hint: First obtain an $x \in R^{n}$ as in problem 1(b). Next, consider the case in which at least one of the elements $x_{1}, \ldots, x_{r} \in R$ has non-zero constant term; and handle this case by modding out by (t). Finally, handle the remaining case by showing that the form $t^{2} q_{1}+t q_{2}$ is also isotropic over R, and then dividing by t and reducing to the previous case.]
c) Using parts (a) and (b), find and prove a formula that relates $u(F)$ to $u(k)$.
3. Let \mathbb{H} be the usual (Hamiltonian) quaternion algebra over \mathbb{R}.
a) Show by example that a polynomial of degree n over \mathbb{H} can have more than n roots in \mathbb{H}.
b) Explain where the usual proof that this cannot happen in a field breaks down in the division algebra \mathbb{H}.
c) Explain why a factorization $f(X)=g(X) h(X)$ of polynomials over \mathbb{H} does not in general imply that $f(c)=g(c) h(c)$ for $c \in \mathbb{H}$, though it does if the coefficients of f, g, h lie in \mathbb{R}. [Note: this is related to part (b).]
4. Let $f(X) \in \mathbb{R}[X]$.
a) Show that if $\alpha \in \mathbb{H}$ is a root of $f(X)$, then so is $\beta \alpha \beta^{-1}$ for all $\beta \in \mathbb{H}^{\times}$.
b) Find all the square roots of -1 in \mathbb{H}, and show that this is consistent with part (a).
5. Let $a \in \mathbb{H}$.
a) Write $f(X)=X^{2}-a, \bar{f}(X)=X^{2}-\bar{a}$, and $F(X)=\bar{f}(X) f(X)$. Show that $F(X) \in \mathbb{R}[X]$, and that $F(X)$ has a root α in $\mathbb{C}=\mathbb{R}[i] \subset \mathbb{H}$.
b) Show by direct computation that if $c:=f(\alpha) \neq 0$ then $\beta:=\overline{c \alpha c^{-1}}$ is a root of $f(X)$.
c) Conclude that a has a square root in \mathbb{H}.
[Note: This argument can be generalized to show that \mathbb{H} is "algebraically closed" as a division algebra.]
6. Let $a \in \mathbb{H}$ such that $a \notin \mathbb{R}$.
a) Show that $K:=\mathbb{R}(a) \subset \mathbb{H}$ is a degree two field extension of \mathbb{R}; that K is a maximal subfield of \mathbb{H}; and that the centralizer $C_{\mathbb{H}}(K)$ of K in \mathbb{H} is equal to K.
b) Show that a has exactly two square roots in \mathbb{H}. [Hint: Show that any square root of a must commute with a and must therefore lie in K, which is a field.]
c) Where did you use that $a \notin \mathbb{R}$? What happens if $a \in \mathbb{R}$?
