Math 702

1. Let $Y \to \mathbb{P}^1_{\mathbb{C}}$ be a *G*-Galois branched cover, with branch locus P_1, \ldots, P_r , where P_j is at x = j. Let *P* be a base point on the positive imaginary axis. Choose a homotopy basis $\sigma_1, \ldots, \sigma_r$ of counterclockwise loops at *P*, where σ_j winds once around P_j , and where the loops (and their interiors) are disjoint except at *P*. Let (g_1, \ldots, g_r) be the description of $Y \to \mathbb{P}^1_{\mathbb{C}}$ with respect to the loops σ_j . Let \mathcal{H} be the associated Hurwitz space, and let $\xi \in \mathcal{H}$ be the point corresponding to $Y \to \mathbb{P}^1_{\mathbb{C}}$. Pick a *j* with $1 \leq j < r$, and let C_j be the circle of radius $\frac{1}{2}$ centered at $x = j + \frac{1}{2}$.

a) Consider a path θ_j in $(\mathbb{P}^1)^r$ beginning at (P_1, \ldots, P_r) , in which the j^{th} and $(j+1)^{\text{th}}$ branch points of Y each move counterclockwise along half of C_j , and the other branch points remain fixed. (Thus the final point of θ_j is $(P_1, \ldots, P_{j-1}, P_{j+1}, P_j, P_{j+2}, \ldots, P_r)$.) Lift θ_j to a path Θ_j in \mathcal{H} with initial point ξ , and let $Y_j \to \mathbb{P}^1_{\mathbb{C}}$ be the cover corresponding to the final point of Θ_j . Show that the description of $Y_j \to \mathbb{P}^1_{\mathbb{C}}$, relative to $\sigma_1, \ldots, \sigma_r$ (in that order), is $(g_1, \ldots, g_{j-1}, g_{j+1}, g_{j+1}^{-1} g_j g_{j+1}, g_{j+2}, \ldots, g_r)$. [Hint: Verify all the entries of the description other than $g_{j+1}^{-1} g_j g_{j+1}$, and then show that that one is forced.]

b) Now consider the loop θ'_j in $(\mathbb{P}^1)^r$ at (P_1, \ldots, P_r) , obtained by "doing θ_j twice." Lift θ'_j to a path Θ'_j in \mathcal{H} with initial point ξ , and let $Y'_j \to \mathbb{P}^1_{\mathbb{C}}$ be the cover corresponding to the final point of Θ' . Show that the description of $Y'_j \to \mathbb{P}^1_{\mathbb{C}}$, relative to $\sigma_1, \ldots, \sigma_r$, is (g'_1, \ldots, g'_r) , where $g'_l = g_l$ for $l \neq j, j + 1$, and $g'_l = (g_j g_{j+1})^{-1} g_l(g_j g_{j+1})$ for l = j, j + 1. [Hint: Iterate part (a).]

c) Show that if the cover $Y \to \mathbb{P}^1_{\mathbb{C}}$ is deformed by allowing the $(j+1)^{\text{th}}$ point to wind once around P_j counterclockwise, then the resulting cover has description (g'_1, \ldots, g'_r) as in (b). Show that the same happens in instead we allow the *j*th point to wind once around P_{j+1} clockwise. What happens if the *j*th point winds once around P_{j+1} counterclockwise? [Hint: Use part (b).]

2. In problem 1, let $G = S_3$, r = 4, and $(g_1, \ldots, g_4) = ((12), (12), (13), (13))$. Thus $Y \to \mathbb{P}^1_{\mathbb{C}}$ is a slit cover. Let P_0 be the point (x = 0). Consider paths θ in $(\mathbb{P}^1)^4$ with initial point (P_1, P_2, P_3, P_4) and final point (P_1, P_0, P_3, P_0) , such that $\theta(t) \in (\mathbb{P}^1)^4 - \Delta$ for $0 \le t < 1$, and such that the first and third entries of $\theta(t)$ remain constant as t varies.

a) Show that each such path θ lifts to a unique path in the compactified Hurwitz space $\overline{\mathcal{H}}$ beginning at the point $\xi \in \mathcal{H}$ that corresponds to $Y \to \mathbb{P}^1$. Explain why the final point of the lifted path determines an unramified cover $Y_{\theta} \to \mathbb{P}^1 - \{P_0, P_1, P_3\}$.

b) Find a choice of θ such that Y_{θ} is connected, and find another choice of θ such that Y_{θ} is *not* connected. [Hint: Choose a homotopy basis for $\mathbb{P}^1 - \{P_0, P_1, P_3\}$, and use problem 1 to determine the description of a Y_{θ} . From the description, how can you tell if a cover is connected?]

3. Let $Y \to \mathbb{P}^1$ be as in problem 2, and let \mathcal{P} be the space that parametrizes the covers obtained from $Y \to \mathbb{P}^1$ by allowing the third branch point to wander in $\mathbb{P}^1 - \{P_1, P_2, P_4\}$, while holding the other three branch points fixed. Let $\xi \in \mathcal{P}$ be the point corresponding to the cover $Y \to \mathbb{P}^1$.

a) Describe an unramified covering map $\pi: \mathcal{P} \to \mathbb{P}^1 - \{P_1, P_2, P_4\}$, and find the image

of ξ .

b) Show that π is not an isomorphism. [Hint: Use problem 1 to show that $\deg(\pi) > 1$.] c) Let $\overline{\pi} : \overline{\mathcal{P}} \to \mathbb{P}^1$ be the branched cover obtained by compactifying $\pi : \mathcal{P} \to \mathbb{P}^1 - \{P_1, P_2, P_4\}$. Show that there are points $\eta, \eta' \in \overline{\mathcal{P}}$ lying over $P_4 \in \mathbb{P}^1$ such that $\overline{\pi}$ is unramified at the point η but is ramified at η' . [Hint: Show that a loop τ at P_3 around P_4 takes Y to itself, but that τ takes some other cover in the family (also with branch locus

 P_1, P_2, P_3, P_4) to a cover other than itself.]

d) Deduce that $\pi: \mathcal{P} \to \mathbb{P}^1 - \{P_1, P_2, P_4\}$ is not Galois. [Hint: Use part (c).]

e) Conclude that the Hurwitz space associated to an S_3 -Galois mock cover with generators $\{(12), (13)\}$ is not Galois over $(\mathbb{P}^1)^4 - \Delta$. [Hint: Relate the Hurwitz space $\mathcal{H} \to (\mathbb{P}^1)^4 - \Delta$ to the cover $\mathcal{P} \to \mathbb{P}^1 - \{P_1, P_2, P_4\}$.]

4. Let k be a field of characteristic $\neq 2$. Let $X = \mathbb{P}^1_{k[[t]]}$ (the projective x-line over k[[t]]), let $X_1 = \operatorname{Spec} k[x][[t]]$, let $X_2 = \operatorname{Spec} k[\bar{x}][[t]]$ (where $x\bar{x} = 1$), and let $X_0 = \operatorname{Spec} k[x, x^{-1}][[t]]$.

a) Prove that there is a 2-cyclic Galois branched cover of X whose pullback to X_1 is given by $y^2 = x(x-t)$; whose pullback to X_2 is given by $z^2 = \bar{x}(\bar{x}-t)$; and whose pullback to X_0 is trivial (i.e. a disjoint union of two copies of X_0).

b) Find such a cover explicitly.

5. For any ring A with an absolute value $|\cdot|$, let $A\{x\} \subset A[[x]]$ denote the ring of power series that converge on $|x| \leq 1$, and let $A\langle x \rangle \subset A[[x]]$ denote the ring of power series that converge on |x| < 1. Let k be a field, let R = k[[t]], and let K = k((t)).

a) Show that $R\{x\} = k[x][[t]]$ and $K\{x\} = k[x][[t]][t^{-1}]$.

b) Show that $R\langle x \rangle = k[[x,t]]$ and $K\langle x \rangle = k[[x,t]][t^{-1}]$.