1. (a) Let b be an odd positive integer, and let $a= \pm 2 b$. Show that there is a positive integer m such that the Jacobi symbol $\left(\frac{a}{m}\right)=-1$. [Hint: There is an m such that $m \equiv 5(\bmod 8)$ and $m \equiv 1(\bmod b)$.]
(b) Show that the same conclusion holds if instead $a= \pm q b$, where b is as in (a) and q is an odd prime not dividing b. [Hint: There is an n prime to q such that $\left(\frac{n}{q}\right)=-1$, and there is an m such that $m \equiv 1(\bmod 4 b), m \equiv n(\bmod q)$.]
(c) Conclude that if $a \in \mathbb{Z}$ is a square modulo p for every prime p, then a is a square in \mathbb{Z}.
2. Verify the assertion of Artin Reciprocity for the extension $\mathbb{Q} \subset K=\mathbb{Q}[\sqrt{n}]$, where $n \in \mathbb{Z}$ is not a square. That is, show that there is a conductor c supported only at the ramified and infinite primes such that the Artin map $\sigma: I^{c} \rightarrow \operatorname{Gal}(K / \mathbb{Q})$ is a surjective homomorphism with kernel equal to $P_{c} \mathcal{N}(c)$. [Hint: Use Quadratic Reciprocity, problem 1 above, and Dirichlet's theorem that every arithmetic progression $a, a+d, a+2 d, \ldots$ with $(a, d)=1$ contains (infinitely many) prime numbers.]
3. (a) Let $X=\mathbb{P}^{1}$, let $S=\{0, \infty\}$, and let $f: X-S \rightarrow \mathbb{G}_{m}$ be the identity map. Show explicitly from the definition that $(0)+(\infty)$ is a modulus for f.
(b) Let $X=\mathbb{P}^{1}$, let $S=\{\infty\}$, and let $f: X-S \rightarrow \mathbb{G}_{a}$ be the identity map. Show explicitly from the definition that $2 \cdot(\infty)$ is a modulus for f. [Hint: Make a change of variables to analyze the behavior of a rational function g at infinity.]
4. Let $X=\mathbb{P}^{1}$, let \mathfrak{m} be an effective divisor on X, and let $X_{\mathfrak{m}}$ be the associated singular curve.
(a) Show that if $\mathfrak{m}=(0)+(\infty)$ then $X_{\mathfrak{m}}$ is isomorphic to the projective plane curve whose affine equation is $y^{2}=x^{3}+x^{2}$.
(b) Show that if $\mathfrak{m}=2 \cdot(\infty)$ then $X_{\mathfrak{m}}$ is isomorphic to the projective plane curve whose affine equation is $y^{2}=x^{3}$.
[Hint: Show the isomorphism away from the singular point of $X_{\mathfrak{m}}$ and then at the local ring at the singular point.]
5. Let p, q be prime numbers (possibly equal), let G be a finite p-group, and let $\mathbb{Q} \subset K$ be a G-Galois extension ramified only at q.
(a) Show that $\mathbb{Q} \subset K$ is totally ramified over q. [Hint: Let I be an inertia group. Use that every proper subgroup of a p-group is contained in a proper normal subgroup, and that \mathbb{Q} has no non-trivial unramified extensions.]
(b) Show that K has no non-trivial abelian unramified extensions L of p-power degree over K. [Hint: Show that the maximal such extension is Galois over \mathbb{Q}, and then apply part (a) to this field.]
(c) Conclude that the class number of K (i.e. the order of the class group of K) is prime to p. [Hint: Use another characterization of the class group, and apply (b).]
6. Let p be an odd prime number, let G be a finite p-group, and let $\mathbb{Q} \subset K$ be a G-Galois extension ramified only at p.
(a) Show that if G is abelian then G is cyclic of p-power order. [Hint: What particular abelian extension of \mathbb{Q} must K lie in? What is the Galois group of this extension of \mathbb{Q} ?]
(b) Show that G is cyclic of p-power order even if we don't assume that G is abelian. [Hint: Apply part (a) to $G^{\mathrm{ab}}=G /[G, G]$ and then apply the Burnside Basis Theorem.]
(c) Conclude that the maximal pro- p-group quotient of $\pi_{1}(\operatorname{Spec} \mathbb{Z}[1 / p])$ is \mathbb{Z}_{p}.
