1. (a) Determine whether or not there is a solution to the equation $x^{2}-43=0$ in \mathbb{Z}_{97}.
(b) Describe the behavior of the prime 97 in the extension $\mathbb{Q} \subset \mathbb{Q}(\sqrt{43})$.
(c) Find an arithmetic progression $97+j n(j=0,1,2, \ldots)$ such that every prime in the progression has the same behavior in this extension as 97 .
2. Let p be a prime number, and let $\beta \in \mathbb{Z}_{p}$.
(a) Show that if p is odd and $\beta \equiv 1(\bmod p)$ then β is a square in \mathbb{Z}_{p}.
(b) Show that the conclusion of part (a) does not in general hold if instead $p=2$, even if we assume that $\beta \equiv 1(\bmod 4)$.
(c) Show that if $p=2$ and $\beta \equiv 1(\bmod 8)$, then β is a square in \mathbb{Z}_{2}. (Hint: P.S. 2 \#6(b).)
3. Let K be a global field containing a primitive m th root of unity, for some $m>1$. Let v be a non-archimedean prime of K that does not divide m, let π be a uniformizer for v, and consider the Hilbert norm residue symbol $(a, b)_{v} \in \mu_{n}$. Recall that
(i) $\quad\left(a a^{\prime}, b\right)_{v}=(a, b)_{v}\left(a^{\prime}, b\right)_{v}$ and $\left(a, b b^{\prime}\right)_{v}=(a, b)_{v}\left(a, b^{\prime}\right)_{v}$;
(ii) $(a, b)_{v}=\left(\frac{a}{v}\right)^{v(b)}$ if $v(a)=0$, where $\left(\frac{a}{v}\right)$ is the m th power residue symbol; and
(iii) $(a, b)_{v}=1$ iff b is a norm from $K_{v}(\sqrt[m]{a})$ to K_{v}.

Using the above, show the following:
(a) $(a,-a)_{v}=1$ for all a. [Hint: What is the norm of $(-\sqrt[m]{a})$?]
(b) $(a, b)_{v}(b, a)_{v}=1$. [Hint: Apply (i) to $(a b,-a b)_{v}$ and use part (a).]
(c) $(\pi, \pi)_{v}=\left(\frac{-1}{v}\right)$. [Hint: Apply (a) and (i) to $(\pi,-\pi)_{v}$. Then use (b) and (ii).]
(d) $(a, b)_{v}=\left(\frac{c}{v}\right)$, where $c=(-1)^{v(a) v(b)} a^{v(b)} b^{-v(a)}$. [Hint: Write $a=\pi^{v(a)} a_{0}$ and $b=\pi^{v(b)} b_{0}$ and apply (i) and (ii).]
4. Let p be an odd prime number, let $R=\mathbb{F}_{p}[t]$, and let $K=\operatorname{frac}(R)=\mathbb{F}_{p}(t)$. Also, let K_{∞} be the completion of K at the infinite prime, i.e. $K_{\infty}=\mathbb{F}_{p}\left(\left(t^{-1}\right)\right)$. Let $\left(K_{\infty}^{*}\right)^{2}$ denote the set of squares of elements of K_{∞}^{*}, and let $P=\left\{a \in R \mid a \in\left(K_{\infty}^{*}\right)^{2}\right\}$. Consider the quadratic residue symbol $\left(\frac{a}{I}\right)$ for fractional ideals I of R, and for $b \in K^{*}$ consider the associated symbol $\left(\frac{a}{b}\right):=\prod_{v}\left(\frac{a}{v}\right)^{v(b)}$, where v ranges over the places of K such that $v(a)=0$.
(a) Show that for relatively prime $a, b \in R$ with $b \in P$, we have that $\left(\frac{a}{b}\right)=\left(\frac{a}{(b)}\right)$. In the case that b is also a prime element (i.e. an irreducible polynomial), show that $\left(\frac{a}{b}\right)=1$ if and only if a is a square modulo b. What can go wrong if instead $b \notin P$?
(b) Show that if $a, b \in P$ are relatively prime, then $\left(\frac{a}{b}\right)\left(\frac{b}{a}\right)=1$. [Hint: Following the situation for \mathbb{Q}, let $\langle a, b\rangle=\left(\frac{a}{b}\right)\left(\frac{b}{a}\right)$. Writing $b=a+c$, use the properties of the quadratic residue symbol to deduce that $\left(\frac{b}{a}\right)=\left(\frac{-a}{b}\right)$ and hence $\langle a, b\rangle=\left(\frac{-1}{b}\right)$. Redoing this with a replaced by 1 , show that $\langle a, b\rangle=1$.]
(c) Show that for $a \in P$, there is an element $c \in P$ such that for all $b \in P$ relatively prime to a, the condition that a is a square modulo b depends only on $b \bmod c$. What is c ?
(d) Show by example that the conclusion of part (c) is not necessarily true if b is not required to be in P (but only in R, and relatively prime to a).
(e) In the case that $p=3$, use parts (a) and (b) to evaluate $\left(\frac{t^{2}+1}{t^{6}+t^{4}+t}\right)$ and $\left(\frac{t^{2}+1}{t^{4}+t^{2}-t+1}\right)$.
(f) Explain the parallel between this situation and the situation over the ring \mathbb{Z}.

