1. Let k be a field with algebraic closure \bar{k}. Let $Y \rightarrow \mathbb{P}_{k}^{1}$ be an irreducible cover of curves, corresponding to a field extension $k(x) \subset L$. Show that the following conditions are equivalent:
(i) The cover is regular, i.e. k is algebraically closed in L.
(ii) The cover is geometrically irreducible, i.e. the induced cover $Y_{\bar{k}} \rightarrow \mathbb{P}_{\bar{k}}^{1}$ is irreducible.
2. (a) Let n be a positive integer, and let k be an algebraically closed field of characteristic 0 (e.g. \mathbb{C} or $\overline{\mathbb{Q}}$). Find a Galois branched cover $Y \rightarrow \mathbb{P}_{k}^{1}$ with Galois group \mathbb{Z} / n and with branch locus $\{0, \infty\}$. What is the group action? What are the inertia groups at the ramified points?
(b) In the case that $k=\overline{\mathbb{Q}}$, show that the cover $Y \rightarrow \mathbb{P}_{k}^{1}$ in part (a) is induced by a Galois branched cover of $\mathbb{P}_{\mathbb{Q}}^{1}$ with branch locus $\{0, \infty\}$ and Galois group \mathbb{Z} / n, if and only if $n=2$. [Hint: If $\kappa=$ complex conjugation, then the generator of the Galois group of $Y^{\kappa} \rightarrow \mathbb{P}_{k}^{1}$ acts like the inverse of the generator of the Galois group of $Y \rightarrow \mathbb{P}_{k}^{1}$.]
(c) For any $n>2$, find a Galois branched cover of $\mathbb{P}_{\mathbb{Q}}^{1}$ with group $\mathbb{Z} / n \mathbb{Z}$. What kind of branch locus are you forced to use?
3. Let $Y \rightarrow \mathbb{P}_{\mathbb{C}}^{1}$ be a G-Galois branched cover, with branch locus $\{1,2,3\}$. Let $x=0$ be chosen as the base point of $\mathbb{P}_{\mathbb{C}}^{1}$, and choose a base point $\xi \in Y$ over $x=0$. Choose disjoint counterclockwise loops $\sigma_{1}, \sigma_{2}, \sigma_{3}$ in $\mathbb{P}_{\mathbb{C}}^{1}-\{1,2,3\}$ at the base point $x=0$, such that σ_{j} is a simple closed curve that winds once around $x=j$, and such that the region bounded by σ_{j} contains the semicircle in the upper half-plane connecting $x=0$ to $x=j$. (Thus $\sigma_{1} \sigma_{2} \sigma_{3}$ is homotopic to the identity.) Let $\left(c_{1}, c_{2}, c_{3}\right)$ be the branch cycle description of $Y \rightarrow \mathbb{P}_{\mathbb{C}}^{1}$ relative to these loops and the base point $\xi \in Y$. Let κ denote complex conjugation (on either \mathbb{C} or $\overline{\mathbb{Q}})$, and let $Y^{\kappa} \rightarrow \mathbb{P}_{\mathbb{C}}^{1}$ denote the induced G-Galois cover, with base point $\xi^{\kappa} \in Y^{\kappa}$ over $x=0$.
(a) Determine the branch cycle description of $Y^{\kappa} \rightarrow \mathbb{P}_{\mathbb{C}}^{1}$ as follows:
(i) Show that the description of $Y^{\kappa} \rightarrow \mathbb{P}_{\mathbb{C}}^{1}$ with respect to the clockwise loops $\sigma_{1}^{\kappa}, \sigma_{2}^{\kappa}, \sigma_{3}^{\kappa}$ at ξ^{κ} is $\left(c_{1}, c_{2}, c_{3}\right)$.
(ii) Show that σ_{1} is homotopic to $\left(\sigma_{1}^{\kappa}\right)^{-1}$ in $\mathbb{P}_{\mathbb{C}}^{1}-\{1,2,3\}$. Similarly show that σ_{3} is homotopic to $\left(\sigma_{3}^{\kappa}\right)^{-1}$. [Hint: You're working in $\mathbb{P}_{\mathbb{C}}^{1}-\{1,2,3\}$, not $\mathbb{A}_{\mathbb{C}}^{1}-\{1,2,3\}$.]
(iii) Deduce that the description of $Y^{\kappa} \rightarrow \mathbb{P}_{\mathbb{C}}^{1}$ with respect to the loops $\sigma_{1}, \sigma_{2}, \sigma_{3}$ and the base point ξ^{κ} is $\left(c_{1}^{-1}, c_{1} c_{3}, c_{3}^{-1}\right)$. [Hint: The product of the three entries is $1 \in G$.]
(b) Explain why a similar approach cannot be used to compute the branch cycle description of $Y^{\omega} \rightarrow \mathbb{P}_{\mathbb{C}}^{1}$, for elements $\omega \in G_{\mathbb{Q}}$ other than 1 and κ.
4. Let $H=\{ \pm 1, \pm i, \pm j, \pm k\}$ be the quaternion group of order 8 . Let $\pi: Y \rightarrow \mathbb{P}_{\mathbb{C}}^{1}$ be the H-Galois cover branched at $\{1,2,3\}$ with description $(i, j,-k)$ relative to a base point $\xi \in Y$ over $x=0$ and relative to the loops $\sigma_{1}, \sigma_{2}, \sigma_{3}$ of problem 3 above. Let κ denote complex conjugation, and for each $\omega \in G_{\mathbb{Q}}$ let $Y^{\omega} \rightarrow \mathbb{P}_{\mathbb{C}}^{1}$ denote the cover induced by ω (where we may pass back and forth between covers of $\mathbb{P}_{\mathbb{C}}^{1}$ and covers of $\mathbb{P}_{\mathbb{Q}}^{1}$ branched at $\{1,2,3\}$).
(a) Find the description of $Y^{\kappa} \rightarrow \mathbb{P}_{\mathbb{C}}^{1}$ relative to $\sigma_{1}, \sigma_{2}, \sigma_{3}$ and ξ^{κ}, and show that $Y \rightarrow \mathbb{P}_{\mathbb{C}}^{1}$ is isomorphic to $Y^{\kappa} \rightarrow \mathbb{P}_{\mathbb{C}}^{1}$ as an H-Galois cover. [Hint: Problem 3.]
(b) Show that the isomorphism in (a) cannot take ξ to ξ^{κ}. [Hint: How does the description change, as the base point of the cover is allowed to vary in its fibre?]
(c) Show that the triple $(i, j,-k)$ is \mathbb{Q}-rational and rigid, and use this to find the field of moduli of $Y \rightarrow \mathbb{P}^{1}$. [Hint: Work explicitly.] How does this generalize part (a)?
(d) Suppose that $\pi: Y \rightarrow \mathbb{P}_{\mathbb{C}}^{1}$ is induced (as an H-Galois cover) by some $\pi_{\mathbb{R}}: Y_{\mathbb{R}} \rightarrow \mathbb{P}_{\mathbb{R}}^{1}$. Show the following:
(i) κ acts as an involution on the points of Y, and satisfies $\kappa \circ \pi=\pi \circ \kappa$ and $\kappa \circ g=g \circ \kappa$ for all $g \in H$. [Hint: By the above hypothesis, the equations of Y, π, and the g-actions all can be written with real coefficients.]
(ii) There is a unique element $h \in H$ such that $\kappa(\xi)=h(\xi)$. Moreover $h= \pm 1 \in H$. [Hint: Use (i) to show that $h^{2}(\xi)=\xi$.]
(iii) The description of $Y^{\kappa} \rightarrow \mathbb{P}_{\mathbb{C}}^{1}$, relative to $\sigma_{1}, \sigma_{2}, \sigma_{3}$ and to $h(\xi)=\xi^{\kappa}$, is $(i, j,-k)$. [Hint: Under the hypothesis of (d), we may identify Y with Y^{κ}, and so we're just changing base points from ξ to $h(\xi)$. Now use that (ii) to show that h is in the center of H.]
(iv) Combine (iii) with (a) above to derive a contradiction.
(e) Explain why the field of moduli of the H-Galois cover $\pi: Y \rightarrow \mathbb{P}^{1}$ is not a field of definition. (Hint: Parts (c) and (d). In particular, is \mathbb{R} a field of definition?)
5. Let $G=A_{5}$, and let $c_{0}=(1,5,2), c_{1}=(3,5,4), c_{2}=(1,2,3,4,5)$.
(a) Show that if $n \equiv \pm 1(\bmod 3)$ then $c_{i}^{n} \sim c_{i}$ for $i=0,1$.
(b) Show that if $n \equiv \pm 1(\bmod 5)$ then $c_{2}^{n} \sim c_{2}$ in G, but not if $n \equiv \pm 2(\bmod 5)$.
(c) Deduce that $\left(c_{0}, c_{1}, c_{2}\right)$ is rational over the field $K=\mathbb{Q}\left(\zeta_{5}+\zeta_{5}^{-1}\right)$, and that $K=\mathbb{Q}(\sqrt{5})$.
(d) Show that $\left(c_{0}, c_{1}, c_{2}\right)$ is rigid. (Hint: Use the representation theory formula for $\#(\bar{\Sigma})$.
(e) Conclude that the G-Galois cover of $\mathbb{P}^{1}-\{0,1, \infty\}$ with description $\left(c_{0}, c_{1}, c_{2}\right)$ is defined over $\mathbb{Q}(\sqrt{5})$, but not over \mathbb{Q}. Conclude also that A_{5} is a Galois group over $\mathbb{Q}(\sqrt{5})$.
