1. Let C be a curve of genus 2 over a field k (which for simplicity may be assumed to be algebraically closed). Let O be a k-point of C, and let \sim denote linear equivalence of divisors on C. Also let $C^{(2)}$ be the symmetric square of C, i.e. the set of unordered pairs of points of C, and denote pairs $\left\{P_{1}, P_{2}\right\}$ in $C^{(2)}$ by $P_{1}+P_{2}$. Using the Riemann-Roch Theorem, show the following:
(a) If $P_{1}, P_{2}, Q_{1}, Q_{2} \in C$ then there exist $R_{1}, R_{2} \in C$ such that $P_{1}+P_{2}+Q_{1}+Q_{2} \sim$ $R_{1}+R_{2}+2 O$ as divisors on C.
(b) In part (a), the element $R_{1}+R_{2} \in C^{(2)}$ is unique if and only if $P_{1}+P_{2}+Q_{1}+Q_{2}$ is not linearly equivalent to $2 O+K$, where K is the canonical divisor on C.
(c) Let \equiv be the equivalence relation on $C^{(2)}$ given by taking $P_{1}+P_{2} \equiv Q_{1}+Q_{2}$ if and only if either
(i) $P_{1}+P_{2}=Q_{1}+Q_{2}$, or
(ii) $P_{1}+P_{2} \sim Q_{1}+Q_{2} \sim K$ as divisors on C.

Let $J=\left(C^{(2)} / \equiv\right)$, and denote the image of $\xi \in C^{(2)}$ in J by $[\xi]$. Then there is a well defined binary operation \oplus making J an abelian group, given by the condition:
$\left[P_{1}+P_{2}\right] \oplus\left[Q_{1}+Q_{2}\right]=\left[R_{1}+R_{2}\right]$ if and only if $\left(P_{1}+P_{2}-2 O\right)+\left(Q_{1}+Q_{2}-2 O\right) \sim R_{1}+R_{2}-2 O$.
Note: The points $P_{1}+P_{2} \in C^{(2)}$ such that $P_{1}+P_{2} \sim K$ form a projective line E in the surface $C^{(2)}$. Blowing down E, i.e. contracting E to a point, yields the surface $\operatorname{Jac}(C)$. Thus J in (c) above corresponds to the set of points of the Jacobian of C, and the group law on $\operatorname{Jac}(C)$ is as in (c).
2. Let k be a finite field, let K be a finite field extension of $k(x)$, and let $\pi: C \rightarrow \mathbb{P}_{k}^{1}$ be the corresponding branched cover of the projective x-line over k. Also, let $S=\pi^{-1}(\infty) \subset C$ (the points at infinity), let $r=\# S$, and let R be the ring of functions on the affine curve $C^{\prime}=C-S$. Assume for simplicity that there is a k-point in S.
(a) Show that there is a natural surjective homomorphism $\operatorname{Div}(C) \rightarrow \operatorname{Div}\left(C^{\prime}\right)$, obtained by ignoring the points at ∞, and that this induces a surjective homomorphism $\alpha: \operatorname{Pic}^{0}(C) \rightarrow \operatorname{Pic}\left(C^{\prime}\right)$.
(b) Show that if $r=1$ then α is an isomorphism.
(c) For general r, if $D \in \operatorname{Div}(C)$, let $[D]$ denote the image of D in $\operatorname{Pic}(C)$. Show that if $D \in \operatorname{Div}^{0}(C)$ and $[D] \in \operatorname{ker}(\alpha)$, then D is linearly equivalent (on C) to a divisor of degree 0 supported on S.
(d) Deduce that $\operatorname{ker}(\alpha)$ is a finite abelian group A having at most $r-1$ generators, and thus $\operatorname{Pic}\left(C^{\prime}\right) \approx \operatorname{Pic}^{0}(C) / A$. Explain why this generalizes (b).
3. (a) Let $K=\mathbb{C}(x)$. Show that the field extension

$$
K \subset K[y, z] /\left(y^{2}-\pi x, z^{3}-\frac{y+\sqrt{\pi}}{y-\sqrt{\pi}}\right)
$$

is Galois with group S_{3}, and corresponds to a finite étale cover $Y \rightarrow \mathbb{P}_{\mathbb{C}}^{1}-\{0,1, \infty\}$.
(b) Find a Galois finite étale cover $Z \rightarrow \mathbb{P} \mathbb{\mathbb { Q }}-\{0,1, \infty\}$ with group S_{3}, together with an isomorphism $Z_{\mathbb{C}}:=Z \times{ }_{\overline{\mathbb{Q}}} \mathbb{C} \xrightarrow{\sim} Y$ which is compatible with the covering maps to $\mathbb{P}_{\mathbb{C}}^{1}-\{0,1, \infty\}$ and with the Galois actions of S_{3}.
4. (a) Let K be a field of characteristic p. Recall that every C_{p}-Galois field extension of K is of the form $L=K[y] /\left(y^{p}-y-a\right)$, for some $a \in K$, where the generator of C_{p} takes $y \mapsto y+1$ (Artin-Schreier theorem).
(i) Show that $K[y] /\left(y^{p}-y-a\right)$ is a C_{p}-Galois field extension of K if and only if a is not of the form $u^{p}-u$, with $u \in K$.
(ii) Show that two such C_{p}-Galois extensions, L (as above) and $M=K[z] /\left(z^{p}-z-b\right)$ (where $b \in K$), are isomorphic if and only if there is an element $u \in K$ such that $u^{p}-u=$ $b-a$. [Hint: $z=y+u$.]
(b) Let k be an algebraically closed field of characteristic p, and let $\alpha \in k$. Let Y_{α} be the curve $y^{p}-y=\alpha x$, and define $\pi_{\alpha}: Y_{\alpha} \rightarrow \mathbb{A}_{k}^{1}$ by $(x, y) \mapsto x$. Show that π is a C_{p}-Galois étale covering map, with Y_{α} irreducible for $\alpha \neq 0$.
(c) With k as in (b), let $\pi: Y \rightarrow \mathbb{A}_{k}^{2}$ be the cover of the (x, t)-plane given by $y^{p}-y=t x$. Show that π is étale and C_{p}-Galois. Explain why this cover can be regarded as a family of C_{p}-Galois étale covers Y_{α} of the x-line, parametrized by the points of the t-line over k. For which pairs α, β is Y_{α} isomorphic to Y_{β} as a Galois cover? Could a family with these properties exist in characteristic 0 ?
(d) Let Ω be the algebraic closure of $k(t)$. Find a G-Galois branched cover of \mathbb{P}_{Ω}^{1} that is not induced by any branched cover of \mathbb{P}_{k}^{1}. [Hint: Use part (c).] How does this differ from the situation in characteristic 0 ?

