- 1. Consider the extension $\mathbb{Z} \subset \mathbb{Z}[\alpha]$, where $\alpha = \frac{1+\sqrt{5}}{2}$.
- (a) Use the Jacobian criterion to find which primes are ramified in this extension. (Hint: Find the minimal polynomial of α .)
- (b) Verify that the prime (3) of \mathbb{Z} remains prime, and the prime (11) splits into two primes $(4+\sqrt{5})$, $(4-\sqrt{5})$. In each case find the ramification index e, the degree f of the residue field extension, and the degree d=ef of the local field extension.
- (c) Similarly, describe the behavior of the primes (2), (5), (7), (19), and ∞ in this extension. (For ∞ , just find d, since e and f are undefined. But see problem 4 below.)
- (d) If parts (a)-(c) are redone for the extension $\mathbb{Z} \subset \mathbb{Z}[\sqrt{5}]$, what remains the same and what changes? Which extension is "nicer", and why?
- 2. (a) Describe the behavior of the prime at ∞ in the extension $\mathbb{Z} \subset \mathbb{Z}[\sqrt[3]{2}]$.
 - (b) Is this extension Galois? Could you have predicted this simply from your answer to (a)?
- 3. Consider the extension $R \subset S$, where $R = \mathbb{F}_3[x]$ and $S = R[\sqrt{F(x)}] = R[Y]/(Y^2 F(x))$ for some $F(x) \in R$.
- (a) If $F(x) = x^2 1$, does K_{∞} (the completion of $K = \operatorname{frac}(R)$ at the infinite prime) contain a \sqrt{F} ? (Hint: How does PS 1 #2a(ii) apply?) Use this to determine the behavior of the infinite prime of K in the extension, and to explain the behavior at ∞ of the corresponding cover of the line. (Here, you need to work on another affine patch to make sense of the quantities e and f.)
 - (b) Do the same with F(x) = x.
 - (c) Do the same with $F(x) = 1 x^2$.
- 4. Consider the extension $\mathbb{Z} \subset \mathbb{Z}[\sqrt{n}]$, for some $n \in \mathbb{Z}$.
- (a) If n = 11, is there a \sqrt{n} in the completion at infinity? What is the degree d of each local field extension at ∞ ? Given that, what would 'e' and 'f' have to be? Which part of problem 3 above does this correspond to? (Hint: See PS1 #2b.)
- (b) Redo part (a) with n = 3. How does the difference between PS1 #2a and PS1 #2b come into play?
- (c) Redo part (a) with n = -5. What is the corresponding part of problem 3 above, now? Given your answer, what "should" we take as the values of 'e' and 'f', for the extension at infinity?
- 5. Consider the ring extension $R \subset S$, where $R = \mathbb{Z}[x]$ and $S = R[Y]/(Y^2 x)$.
 - (a) Find the height 1 primes of R at which this extension is ramified.
- (b) For each such prime, determine which of two conditions for being unramified (condition (i) on separability, condition (ii) on uniformizers) fails.
- 6. (a) Is there a $\sqrt{-7}$ in the ring \mathbb{Z}_p of p-adic integers, if p=3? if p=11? In each case, either explain why there is no $\sqrt{-7}$ in \mathbb{Z}_p , or prove that there is one and find its image a explictly in $\mathbb{Z}/p^2 = \mathbb{Z}_p/p^2$ (so that a is thus a $\sqrt{-7} \in \mathbb{Z}/p^2$).
- (b) Prove the following strong form of Hensel's Lemma: Let $F(x) \in \mathbb{Z}_p[x]$, $x_0 \in \mathbb{Z}$, $m \geq 0$. Suppose $F(x_0) \equiv 0 \pmod{p^{2m+1}}$ but $F'(x_0) \not\equiv 0 \pmod{p^{m+1}}$. Then there is an $\alpha \in \mathbb{Z}_p$ such that $F(\alpha) = 0$ and $\alpha \equiv x_0 \pmod{p}$. (Hint: Generalize "Newton's method" to allow m > 0.)
 - (c) Deduce that there is a $\sqrt{-7}$ in \mathbb{Z}_2 , and hence in $\mathbb{Z}/2^n$ for all n.
 - (d) Is there a $\sqrt{7}$ in $\mathbb{Z}/2$? in \mathbb{Z}_2 ? Explain.
- 7. (a) Use Hensel's Lemma to show that there is a unique formal power series $F(t) = a_1 t + a_2 t^2 + \cdots$ $(a_i \in \mathbb{R})$ such that $3F(t)^2 + F(t)e^t + \sin t = 0$. Find the first few coefficients a_i .
- (b) Show that the power series F(t) has a positive radius of convergence. (Hint: Use an appropriate version of the Implicit Function Theorem.)