- 1. Let R be a Noetherian domain, and let \mathfrak{p} be a non-zero prime ideal of R. Let $R_{\mathfrak{p}}$ be the local ring of R at \mathfrak{p} . Let $\hat{R}_{\mathfrak{p}}$ be the \mathfrak{p} -adic completion of R, viz. $\lim_{\leftarrow} R/\mathfrak{p}^n$.
 - (a) Show that if \mathfrak{p} is maximal, then there is a natural inclusion $R_{\mathfrak{p}} \hookrightarrow \hat{R}_{\mathfrak{p}}$.
- (b) Show that this conclusion does not necessarily hold for more general prime ideals \mathfrak{p} . [Hint: Try R = k[x,y] and $\mathfrak{p} = (x)$. Is y a unit?]
- 2. (a) Let q be an odd prime power, and let $K_{\infty} = \mathbb{F}_q((t^{-1}))$, the infinite completion of $R = \mathbb{F}_q[t]$. Let $\mu = \{\text{roots of 1 in } R\}$. Verify the following:
- (i) There is an element $s \in R$ whose norm is $N(s) = (\#\mu) + 1$, and having the following property: Every element of K_{∞} can uniquely be written in the form $\alpha = \sum_{i=-\infty}^{n} a_i s^i$ for some integer n, with each $a_i \in \mu \cup \{0\}$ and $a_n \neq 0$. [Hint: There is a very simple choice for s.]
- (ii) If α is as in (i), then α is a square in K_{∞} iff a_n is a square in μ and n is even. [Hint: If n is even, is $s^{-n}\alpha$ a square?]
- (iii) Let $S \subset K_{\infty}$ consist of the elements whose expressions involve only negative powers of s. Then S is a fundamental domain for the translation action of R on K_{∞} .
- (b) Now let $K_{\infty} = \mathbb{R}$, the infinite completion of $R = \mathbb{Z}$. What is the analog of part (a)? [Hint: There are some differences, especially in (ii).] In the analog of (a)(iii), draw S.
- (c) Redo (b) for $R = \mathbb{Z}[i]$ and for $R = \mathbb{Z}[\zeta_3]$, where ζ_3 is a primitive cube root of unity. [Note: The pictures of S should be a surprise.]
- 3. (a) Find all $\alpha \in \mathbb{Z}$ such that $\alpha^2 \equiv 2 \pmod{21}$. Then do the same for $\alpha \in \mathbb{Z}[i]$. (Hint: Chinese Remainder Theorem.)
 - (b) Find all $f(t) \in \mathbb{F}_{17}[t]$ such that $f(t)^2 \equiv t \pmod{t^2 1}$.
- 4. (a) Find the continued fraction expansion for $\sqrt{7}$.
 - (b) Find all the units in $\mathbb{Z}(\sqrt{7})$, the ring of integers of $\mathbb{Q}(\sqrt{7})$.
 - (c) What happens in parts (a) and (b) if $\sqrt{7}$ is replaced by $\sqrt{-7}$?
- 5. Let k be a field, and let $f(t) = t^4 + t^3 + t^2 + t$ and $g(t) = t^3 + t^2 + 1$ in k[t].
 - (a) Find the g.c.d. of the polynomials f(t) and g(t) in k[t].
 - (b) Find polynomials $X(t), Y(t) \in k[t]$ such that f(t)X(t) + g(t)Y(t) = 1.
 - (c) Find the continued fraction expansion for f(t)/g(t) over k[t].
- 6. Let $k = \mathbb{F}_3$, R = k[t], and $K_{\infty} = k((t^{-1}))$.
 - (a) Show that $\sqrt{1+t^2} \in K_{\infty}$.
 - (b) Find the continued fraction expansion for $\sqrt{1+t^2}$ over R.
 - (c) Find all solutions $X(t), Y(t) \in R$ to the equation $X(t)^2 (1+t^2)Y(t)^2 = 1$.
- (d) Find all the units in the ring $k[t, \sqrt{1+t^2}]$, and interpret your answer in terms of functions on the affine curve $y^2 = 1 + x^2$ over k.
- (e) What happens if $1+t^2$ is replaced by 1+t, or by $1-t^2$? What goes wrong, and why? What would analogous examples be with R, K_{∞} replaced by \mathbb{Z}, \mathbb{R} ?