Math 625

Note: Those who would like extra time can have an automatic extension of up to four days.

In Hartshorne, read Chapter V, sections 2-6. Optional: Read Appendix A.

1. From Hartshorne, Chapter V, do problems 2.1, 2.6. Optional: problems 3.1, 4.5.

2. a) Find an example of a smooth projective surface X, an ample divisor H on X, and a divisor D on X, such that $D \cdot H > 0$ but nD is not linearly equivalent to an effective divisor for any positive integer n.

- b) In your example, what is D^2 ?
- c) Can there be an example in part (a) for which $D^2 > 0$?

3. Let X be the blow-up of \mathbb{P}^2 at a point P.

- a) Describe $\operatorname{Pic} X$ as a group together with the intersection pairing.
- b) Determine which divisors on X are ample.
- c) Verify the Hodge Index Theorem for X.

4. Consider the rational ruled surface X, mapping onto the projective x-line \mathbb{P}^1 , which is constructed as follows. Over the affine x-patch U_0 of \mathbb{P}^1 , the inverse image is $U_0 \times \mathbb{P}^1$, where the second factor is the projective y-line. Over the affine \bar{x} -patch U_1 of \mathbb{P}^1 (where $x\bar{x} = 1$ on $U_{01} := U_0 \cap U_1$), the inverse image is the projective \bar{y} -line. Over U_{01} , we have the transition function $\bar{y} = \bar{x}^n y$, for some non-negative integer n. Find the numerical invariant e of the rational ruled surface X, and find a locally free sheaf \mathcal{E} of rank 2 on \mathbb{P}^1 such that $X \approx \mathbb{P}(\mathcal{E})$.

5. a) Let H be the line at infinity in \mathbb{P}^2 , and let P, Q be distinct points on H. Let X be the blow-up of \mathbb{P}^2 at P and Q; let E_1, E_2 be the exceptional divisors over P, Q; and let L be the proper transform of H. Describe Pic X, in particular giving the self-intersections of E_1, E_2, L , and giving the pairwise intersections of these three divisors.

b) Let H_1, H_2 be the two lines at infinity in $\mathbb{P}^1 \times \mathbb{P}^1$, given by $x = \infty$ and $y = \infty$ respectively. Let O be the point at which H_1, H_2 intersect. Let X' be the blow-up of $\mathbb{P}^1 \times \mathbb{P}^1$ at O; let E be the exceptional divisor over O; and let L_1, L_2 be the proper transforms of H_1, H_2 . Describe Pic X', in particular giving the self-intersections of L_1, L_2, E , and giving the pairwise intersections of these three divisors.

c) Show that $X \cong X'$. Under your isomorphism, which divisors of X' do $E_1, E_2, L \subset X$ correspond to?