Note: Those who would like extra time can have an automatic extension of up to four days.

In Hartshorne, read Chapter V, sections 2-6. Optional: Read Appendix A.

1. From Hartshorne, Chapter V, do problems 2.1, 2.6. Optional: problems 3.1, 4.5.
2. a) Find an example of a smooth projective surface X, an ample divisor H on X, and a divisor D on X, such that $D \cdot H>0$ but $n D$ is not linearly equivalent to an effective divisor for any positive integer n.
b) In your example, what is D^{2} ?
c) Can there be an example in part (a) for which $D^{2}>0$?
3. Let X be the blow-up of \mathbb{P}^{2} at a point P.
a) Describe Pic X as a group together with the intersection pairing.
b) Determine which divisors on X are ample.
c) Verify the Hodge Index Theorem for X.
4. Consider the rational ruled surface X, mapping onto the projective x-line \mathbb{P}^{1}, which is constructed as follows. Over the affine x-patch U_{0} of \mathbb{P}^{1}, the inverse image is $U_{0} \times \mathbb{P}^{1}$, where the second factor is the projective y-line. Over the affine \bar{x}-patch U_{1} of \mathbb{P}^{1} (where $x \bar{x}=1$ on $\left.U_{01}:=U_{0} \cap U_{1}\right)$, the inverse image is the projective \bar{y}-line. Over U_{01}, we have the transition function $\bar{y}=\bar{x}^{n} y$, for some non-negative integer n. Find the numerical invariant e of the rational ruled surface X, and find a locally free sheaf \mathcal{E} of rank 2 on \mathbb{P}^{1} such that $X \approx \mathbb{P}(\mathcal{E})$.
5. a) Let H be the line at infinity in \mathbb{P}^{2}, and let P, Q be distinct points on H. Let X be the blow-up of \mathbb{P}^{2} at P and Q; let E_{1}, E_{2} be the exceptional divisors over P, Q; and let L be the proper transform of H. Describe Pic X, in particular giving the self-intersections of E_{1}, E_{2}, L, and giving the pairwise intersections of these three divisors.
b) Let H_{1}, H_{2} be the two lines at infinity in $\mathbb{P}^{1} \times \mathbb{P}^{1}$, given by $x=\infty$ and $y=\infty$ respectively. Let O be the point at which H_{1}, H_{2} intersect. Let X^{\prime} be the blow-up of $\mathbb{P}^{1} \times \mathbb{P}^{1}$ at O; let E be the exceptional divisor over O; and let L_{1}, L_{2} be the proper transforms of H_{1}, H_{2}. Describe Pic X^{\prime}, in particular giving the self-intersections of L_{1}, L_{2}, E, and giving the pairwise intersections of these three divisors.
c) Show that $X \cong X^{\prime}$. Under your isomorphism, which divisors of X^{\prime} do $E_{1}, E_{2}, L \subset X$ correspond to?
