In Hartshorne, read Chapter III, Sections 10-12; and Chapter V, Section 1. Optional: Read Appendices B and C.

1. From Hartshorne: In Chapter III, do problems 10.1, 10.6. In Chapter V, do problems 1.4, 1.5. Optional: In Chapter III do problems 10.3, 10.5, 11.4, 12.2, and in Chapter V, do problems 1.7, 1.12.
2. (a) Show that the symmetric power $\operatorname{Sym}^{n}\left(\mathbb{P}^{1}\right)$ is isomorphic to \mathbb{P}^{n}, over any algebraically closed field. [Hint: View a point of \mathbb{P}^{n} as corresponding to the coefficients of a polynomial $f(x)$, and a point of $\operatorname{Sym}^{n}\left(\mathbb{P}^{1}\right)$ as corresponding to the roots of the polynomial.] What happens over \mathbb{R} ?
(b) Let $\Delta \subset \operatorname{Sym}^{n}\left(\mathbb{P}^{1}\right)$ be the "weak diagonal," consisting of elements with at least two equal entries. Explain why this corresponds to the "discriminant locus" of \mathbb{P}^{n} (meaning the locus where the discriminant of the corresponding polynomial vanishes).
3. (a) Show that if E / F is a Galois field extension of degree d, then $E \otimes_{F} E$ is isomorphic to a direct sum of d copies of E.
(b) Deduce that if $Y \rightarrow X$ is a Galois finite étale cover of integral schemes of degree d, then $W:=Y \times_{X} Y$ is isomorphic to a disjoint union of d copies of Y.
(c) Deduce that if $Y \rightarrow X$ is a finite étale cover of integral schemes of degree d, and if $Z \rightarrow X$ is the Galois closure of $Y \rightarrow X$, then $Z \times_{X} Y$ is isomorphic to a disjoint union of d copies of Z.
4. Let X be a smooth connected projective variety, let P be a closed point of X, and let \tilde{X} be the blow-up of X at P, with exceptional divisor E. Show that E is not linearly equivalent in \tilde{X} to any effective divisor on \tilde{X} whose support does not contain E. [Hint: Otherwise, consider the corresponding rational function on Y, and view it as a rational function on X. What is its divisor there?]
5. What does Riemann-Roch say about the dimension of the space of rational functions on \mathbb{P}^{2} that have poles at worst D, where D is a given effective divisor of degree d ? How can this conclusion also be seen without Riemann-Roch?
