Read Hartshorne, Chapter III, Sections 5-9.

1. In Hartshorne, Chapter III, do problems 5.1, 7.1, 9.4. (In 9.4, you may assume that Y is a regular curve.)
Optional problems from Hartshorne: In Chapter III, problems 4.7, 5.3, 5.7, 9.3(a,b).
2. Suppose that $\pi: Y \rightarrow X$ is an étale morphism; i.e. it is locally given on the ring level by adjoining elements y_{1}, \ldots, y_{m} subject to relations f_{1}, \ldots, f_{m} such that the relative Jacobian matrix $(\partial f / \partial y)$ is invertible.
a) Show that if X is a smooth k-scheme then so is Y.
b) Let $\phi: Z \rightarrow X$ be any morphism, and consider the fibre product $Z \times_{X} Y=$ $\{(z, y) \mid \phi(z)=\pi(y)\}$. Show that the first projection $p_{1}: Z \times_{X} Y \rightarrow Z$ is étale. (Hint: First show that p_{1} is defined by the same equations as define π.)
3. Suppose that $\pi: Y \rightarrow X$ is a finite étale cover of smooth connected k-schemes of dimension d. Let ϕ be an automorphism of the cover, and suppose that $\phi\left(Q_{0}\right)=Q_{0}$ for some $Q_{0} \in Y$.
a) Show that $Y \times{ }_{X} Y$ is a smooth scheme of dimension d, and that the first projection $p_{1}: Y \times_{X} Y \rightarrow Y$ is étale. (Hint: problem 2.)
b) Define $s, t: Y \rightarrow Y \times_{X} Y$ by $s(Q)=(Q, Q)$ and $t(Q)=(Q, \phi(Q))$. Show that s and t are each sections of p_{1}, and that each is an isomorphism onto its image, with inverse equal to p_{1}.
c) Show that the images of s and of t are closed connected subvarieties of $Y \times{ }_{X} Y$; are of dimension d; and intersect. Deduce that these images are equal.
d) Conclude that ϕ is the identity.
e) In the case of $k=\mathbb{C}$, why is the conclusion of (d) expected?
4. Let X and Y be smooth connected k-schemes, and let $\pi: Y \rightarrow X$ be a finite surjective morphism of degree d whose restriction to some Zariski dense open subset is étale. (We say that π is a branched cover of degree d.)
a) Show that the covering group has at most d elements. (Hint: First reduce to the étale case by restricting to an open set, and then use problem 3.)
b) For $d=3$, give an example where the covering group has exactly three elements, and an example where it has fewer than three elements.
5. Let $n, i, m, q_{1}, \ldots, q_{m}$ be integers, with $n, m>0$ and $i \geq 0$. Let $\mathcal{F}=\bigoplus_{j=1}^{m} \mathcal{O}\left(q_{j}\right)$ on \mathbb{P}_{k}^{n} for some algebraically closed field k. Find the dimension of $H^{i}\left(\mathbb{P}^{n}, \mathcal{F}\right)$ explicitly in terms of the integers $n, i, q_{1}, \ldots, q_{m}$.
