Read Hartshorne, Chapter IV, section 4.

1. In Hartshorne, Chapter IV, do problems 1.7, 3.2, 4.3.
2. Recall that if k is an algebraically closed field then a smooth connected projective k-curve X has genus 0 if and only if $X \approx \mathbb{P}_{k}^{1}$.
a) Show by example that this assertion is false if k is not assumed algebraically closed.
b) What goes wrong with the proof in that case? (Recall that Riemann-Roch still holds for non-algebraically closed fields.)
c) Show that over a general field k, if X has genus 0 , then $X \approx \mathbb{P}_{k}^{1}$ iff X has a k-point.
3. Show that if k is algebraically closed of characteristic $p \neq 0$, then there are unramified covers $X \rightarrow \mathbb{A}_{k}^{1}$ such that the smooth projective model of X has arbitrarily large genus.
4. Redo PS2 problem 5(c) for a regular dodecahedron instead of a tetrahedron.
5. If $Y \rightarrow X$ is a Galois branched cover of regular connected schemes of dimension 1, with Galois group G, and if $Q \in Y$, recall that the decomposition group $D_{Q} \subset G$ consists of the elements $g \in G$ such that $g(Q)=Q$.
a) Show that D_{Q} is a subgroup of G.
b) Show that the order of D_{Q} is equal to the ramification index e_{Q} if $Y \rightarrow X$ is a branched cover of curves defined over an algebraically closed field k. Is this true for all fields k ? Is an inequality true in one direction?
c) Let $k=\mathbb{C}$, let $Y=\mathbb{A}^{1}$ be the y-line, let $X=\mathbb{A}^{1}$ be the x-line, and consider the cover $Y \rightarrow X$ given by $y^{2}=x$. Show that this cover is Galois; find the Galois group; and find the branch locus. Also find D_{Q} if $Q \in Y$ lies over $x=0$. Redo this with $x=1$ and with $x=-1$. What if instead $k=\mathbb{R}$?
d) Let $Z \subset \mathbb{A}^{3}$ be the affine curve given by $y^{2}=x, z^{2}=x-1$, and let $\pi: Z \rightarrow X=\mathbb{A}^{1}$ be the cover given by projection onto the x-coordinate. Redo part (c) for this cover.
e) Let $X=\operatorname{Spec} \mathbb{Z}$, let $Y=\operatorname{Spec} \mathbb{Z}[i]$, and let $\pi: Y \rightarrow X$ be the morphism corresponding to the inclusion $\mathbb{Z} \hookrightarrow \mathbb{Z}[i]$. Show that this cover is Galois, and find the Galois group and branch locus. Then find the decomposition group D_{Q} if $Q \in Y$ lies over the point corresponding to the prime (2). Redo this with the prime (3) and with the prime (5).
