Note: Those who would like extra time can have an automatic extension of up to four days.

In Hartshorne, read Chapter II, sections 8-9.

1. In Hartshorne, Chapter II, do these problems: $7.10(\mathrm{a}, \mathrm{b})$ (parts (c, d) are optional); 8.5(a) (part (b) is optional); 8.8, 9.1.
2. a) Show directly, by considering differential forms, that $\Omega_{X}^{1} \approx \mathcal{O}(-2)$, if $X=\mathbb{P}^{1}$. [Hint: What is $d\left(x^{-1}\right)$?]
b) Show directly, by considering differential forms, that $\Omega_{X}^{1} \approx \mathcal{O}$, if $X \subset \mathbb{P}^{2}$ is the cubic curve given by $y^{2} z=x^{3}-x z^{2}$.
c) Verify Riemann-Roch directly for $X=\mathbb{P}^{1}$. That is, show that for any divisor D,

$$
\operatorname{dim} \Gamma(X, \mathcal{O}(D))-\operatorname{dim} \Gamma\left(X, \Omega_{X}^{1} \otimes \mathcal{O}(-D)\right)=\operatorname{deg} D+1-g
$$

where $g=\operatorname{genus}\left(\mathbb{P}^{1}\right)=0$. [Hint: $D \sim n P$ for some $n \in \mathbb{Z}$ and any point P on \mathbb{P}^{1}.]
3. a) Show that for every integer $n>1$ there is an integer $d>1$ with the following property: if m is any positive integer and $\phi: \mathbb{P}^{m} \rightarrow \mathbb{P}^{n}$ is a morphism, then the image of ϕ cannot be a smooth hypersurface of degree at least d. Find such a d explicitly in terms of n. [Hint: ω.]
b) Find a pair of integers $n, d>1$ such that the above property fails for that pair (i.e., d is not sufficiently large with respect to n).
4. Let k be a field, let T be the affine t-line over k, let $X=\operatorname{Spec} k[x, y, t] /\left(y^{2}-x^{3}-t\right)$, and let $f: X \rightarrow T$ be the projection onto the t-coordinate. Determine where X is regular, where it is smooth as a k-scheme, and where it is smooth as a T-scheme. (Note: Your answer should depend on the characteristic of k.)

