In Hartshorne, read Chapter II, sections 6-7.

1. In Hartshorne, Chapter II, do these problems: 6.6, 6.7, 7.1, 7.5, 7.6. (Optional study problems to read, not to be submitted: 6.10-6.12, 7.7, 7.13.)
2. Let k be an algebraically closed field, and let X be a smooth connected projective k-curve that is not isomorphic to \mathbb{P}_{k}^{1}. Let K be the function field of X. Let $f \in K-k$.
a) Show that f defines a non-constant rational map from X to \mathbb{P}^{1}, and that this extends to a morphism $X \rightarrow \mathbb{P}^{1}$.
b) Deduce that the divisor $(f)_{\infty}$ has degree >1. [Hint: What is the degree of the morphism in (a), or equivalently the degree of the corresponding field extension?]
c) Deduce that if P is a closed point of X, then there is no rational function on X having a pole of order 1 at P and having no other poles.
d) Conclude that if $P, Q \in X$ are distinct closed points, then viewed as divisors, P and Q are not linearly equivalent.
e) Evaluate the dimensions of the k-vector spaces $\Gamma(X, \mathcal{O})$ and $\Gamma(X, \mathcal{O}(P))$, where P is a closed point of X.
f) Do your answers to parts (a)-(e) change if we instead take $X=\mathbb{P}^{1}$?
3. a) Let Y_{1}, Y_{2} be distinct irreducible curves in \mathbb{P}^{2} of degrees d_{1}, d_{2} respectively. Let U be the complement of $Y_{1} \cup Y_{2}$ in \mathbb{P}^{2}. Find the divisor class group of U, and determine whether it is trivial and whether it is torsion free.
b) Consider $\mathbb{P}^{1} \times \mathbb{P}^{1}$, with coordinates $\left(x_{0}: x_{1} ; y_{0}: y_{1}\right)$. Let d be a positive integer, and let Y be the curve in $\mathbb{P}^{1} \times \mathbb{P}^{1}$ given by the equation $x_{1}^{d} y_{0}^{d}+x_{0}^{d} y_{1}^{d}=x_{0}^{d} y_{0}^{d}$. Let U be the complement of Y in $\mathbb{P}^{1} \times \mathbb{P}^{1}$. Find the divisor class group of U and determine whether it is trivial and whether it is torsion free.
4. a) Show that the quartic (degree 4) curves in \mathbb{P}^{2} form a complete linear system, and find its dimension d. (Here "curve" means the scheme defined by the ideal of a homogeneous polynomial, and degenerate curves are permitted.)
b) Let P be a closed point of \mathbb{P}^{2}, and consider the curves in the linear system in (a) that pass through P. Show that they form a linear system, and find its dimension. Is this a complete linear system?
c) Redo part (b) with P replaced by two distinct points P, Q in \mathbb{P}^{2} (i.e. curves passing through both points).
d) Does the obvious pattern of dimensions, suggested by your answers to parts (a)-(c), continue indefinitely if more and more points are chosen?
