Math 624

In Hartshorne, read Chapter II, sections 5-6.

1. In Hartshorne, Chapter II, do these problems: 5.8, 5.12, 5.13, 6.1, 6.4. (Optional study problems, not to be submitted: 5.17, 5.18.)

2. (a) In the situation of problem 3 on Problem Set 6, determine whether each of the items (i)-(v) is locally free, invertible, and very ample.

(b) For each of the following, redo problem 3 on Problem Set 6, including determining whether these are locally free, invertible, and very ample.

i) $\mathcal{F} = \mathcal{O}(r)$, where $r \in \mathbb{Z}$ is a fixed integer.

ii) $\mathcal{F} = \mathcal{O}(r) \oplus \mathcal{O}(s)$, where $r, s \in \mathbb{Z}$ are fixed integers.

iii) $\mathcal{F}(U) = \{ (\text{not necessarily continuous}) \text{ functions } \phi : U \to k \}.$

3. Let $\mathcal{F} = \bigoplus_{i=1}^{\circ} \mathcal{O}(r_i)$ on \mathbb{P}_k^n .

a) For which choices of s, r_i is \mathcal{F} locally free? Prove your assertion.

b) For which choices of s, r_i is \mathcal{F} locally free of rank 1? Prove your assertion.

c) For which choices of s, r_i is \mathcal{F} very ample? Prove your assertion.

d) For which choices of s, r_i is there a sheaf \mathcal{G} such that $\mathcal{F} \otimes \mathcal{G} = \mathcal{O}$? For each such choice, find \mathcal{G} explicitly.

4. On each of the following k-schemes, determine which of the listed divisors (if any) are linearly equivalent.

a) $X = \mathbb{P}^2$, with homogeneous coordinates (x : y : z). Divisors $L_x, L_y, L_z, L_x + L_y$, where L_x is the prime divisor where x = 0 and similarly for L_y, L_z .

b) $X = \mathbb{A}^2$, with affine coordinates (x, y). Divisors $L_x, L_y, L_x + L_y$.

c) $X = \mathbb{P}^1 \times \mathbb{P}^1$, with bihomogeneous coordinates $(x_0 : x_1; y_0 : y_1)$. Divisors $L_{x_0}, L_{x_1}, L_{y_0}, L_{y_1}, L_{x_0} + L_{y_0}$.

d) $X = \mathbb{A}^1$. Divisors $P_0, P_1, P_{-1}, 2P_0, P_1 + P_{-1}$, where P_c is the point where x = c.

e) $X = \mathbb{P}^1$. Divisors $P_0, P_1, P_{-1}, 2P_0, P_1 + P_{-1}$, where P_c is the point (c:1).