In Hartshorne, read Chapter II, sections 5-6.

1. In Hartshorne, Chapter II, do these problems: 5.8, 5.12, 5.13, 6.1, 6.4. (Optional study problems, not to be submitted: $5.17,5.18$.)
2. (a) In the situation of problem 3 on Problem Set 6 , determine whether each of the items (i)-(v) is locally free, invertible, and very ample.
(b) For each of the following, redo problem 3 on Problem Set 6, including determining whether these are locally free, invertible, and very ample.
i) $\mathcal{F}=\mathcal{O}(r)$, where $r \in \mathbb{Z}$ is a fixed integer.
ii) $\mathcal{F}=\mathcal{O}(r) \oplus \mathcal{O}(s)$, where $r, s \in \mathbb{Z}$ are fixed integers.
iii) $\mathcal{F}(U)=\{$ (not necessarily continuous) functions $\phi: U \rightarrow k\}$.
3. Let $\mathcal{F}=\bigoplus_{i=1}^{s} \mathcal{O}\left(r_{i}\right)$ on \mathbb{P}_{k}^{n}.
a) For which choices of s, r_{i} is \mathcal{F} locally free? Prove your assertion.
b) For which choices of s, r_{i} is \mathcal{F} locally free of rank 1? Prove your assertion.
c) For which choices of s, r_{i} is \mathcal{F} very ample? Prove your assertion.
d) For which choices of s, r_{i} is there a sheaf \mathcal{G} such that $\mathcal{F} \otimes \mathcal{G}=\mathcal{O}$? For each such choice, find \mathcal{G} explicitly.
4. On each of the following k-schemes, determine which of the listed divisors (if any) are linearly equivalent.
a) $X=\mathbb{P}^{2}$, with homogeneous coordinates $(x: y: z)$. Divisors $L_{x}, L_{y}, L_{z}, L_{x}+L_{y}$, where L_{x} is the prime divisor where $x=0$ and similarly for L_{y}, L_{z}.
b) $X=\mathbb{A}^{2}$, with affine coordinates (x, y). Divisors $L_{x}, L_{y}, L_{x}+L_{y}$.
c) $X=\mathbb{P}^{1} \times \mathbb{P}^{1}$, with bihomogeneous coordinates $\left(x_{0}: x_{1} ; y_{0}: y_{1}\right)$. Divisors $L_{x_{0}}, L_{x_{1}}$, $L_{y_{0}}, L_{y_{1}}, L_{x_{0}}+L_{y_{0}}$.
d) $X=\mathbb{A}^{1}$. Divisors $P_{0}, P_{1}, P_{-1}, 2 P_{0}, P_{1}+P_{-1}$, where P_{c} is the point where $x=c$.
e) $X=\mathbb{P}^{1}$. Divisors $P_{0}, P_{1}, P_{-1}, 2 P_{0}, P_{1}+P_{-1}$, where P_{c} is the point $(c: 1)$.
