In Hartshorne, read Chapter II, sections 2-3.

1. In Hartshorne, Chapter II, do these problems: 1.17, 2.8, 2.10, 2.11, 2.13, 3.5, 3.9, 3.16.
2. a) Let k be a field, and draw $\operatorname{Spec} k[x, t]$, $\operatorname{Spec} k[x, t] /\left(t^{2}\right)$, and $\operatorname{Spec} k[x][[t]]$. In each case draw the following loci, showing and labeling each point where they meet:
$(x),(x-2),(t),(t-1),(t-x),\left(t-x^{2}\right),\left(t^{2}-x\right),(1-x t)$.
Indicate if your answers depend on the field, and if so how.
b) For each of the following rings R, sketch $X=\operatorname{Spec} R$ and determine whether X is connected, irreducible, reduced, integral: $\mathbb{C}[x] /\left(x^{2}-x\right), \mathbb{C}[x] /\left(x^{3}-x^{2}\right), \mathbb{C}[x, y] /(x y-y)$, $\mathbb{Z} / 6, \mathbb{Z} / 12, \mathbb{Z}[x] /(2 x), \mathbb{Z}[x] /\left(x^{2}\right), \mathbb{Z}[x] /(4)$.

3 . Let R be a ring and let $X=\operatorname{Spec} R$.
a) Show that the nilradical of R (i.e. the intersection of the prime ideals of R) is trivial iff X is reduced.
b) Suppose that the nilradical of R is trivial. Show that the Jacobson radical of R (i.e. the intersection of the maximal ideals of R) is trivial iff $\overline{\operatorname{Max} R}=X$ (where we view $\operatorname{Max} R \subseteq \operatorname{Spec} R=X$, and take its closure).
c) Give an example of a ring such that either the nilradical or the Jacobson radical is trivial, but not both. For this example, verify directly that the assertions of a) and b) hold.
4. Let k be a field. For each of the following morphisms ϕ of schemes, determine whether ϕ is of finite type, finite, quasi-finite, or surjective.
(i) ϕ is the morphism corresponding to the endomorphism of $k[x]$ given by $x \mapsto x^{3}$.
(ii) ϕ is the morphism corresponding to the inclusion of rings $k[x] \hookrightarrow k[x, y] /\left(y^{3}-y-x\right)$.
(iii) ϕ is the morphism corresponding to $k[x] \hookrightarrow k\left[x, y, y^{-1}\right] /\left(y^{3}-y-x\right)$.
(iv) ϕ is the first projection map $\mathbb{P}_{k}^{1} \times{ }_{k} \mathbb{A}_{k}^{1} \rightarrow \mathbb{P}_{k}^{1}$.
(v) ϕ is the second projection map $\mathbb{P}_{k}^{1} \times{ }_{k} \mathbb{A}_{k}^{1} \rightarrow \mathbb{A}_{k}^{1}$.
(vi) ϕ is the morphism corresponding to the inclusion of rings $k[x] \hookrightarrow k(x)$.

