Read Hartshorne, Chapter I, sections 4-5.

1. In Hartshorne, Chapter I, do these problems: $3.5,3.6,3.14(\mathrm{a}), 3.21,4.4,4.6,5.1,5.2$.
2. (a) Show that the complex affine line is not birationally isomorphic to the curve $X \subset \mathbb{A}_{\mathbb{C}}^{2}$ given by $x^{3}+y^{3}=1$. Do this in steps, by assuming instead that there is an isomorphism $\Phi: K\left(\mathbb{A}^{2}\right) \rightarrow K(X)$ of function fields, and then proceeding as follows:
(i) There are relatively prime non-zero polynomials $p, q, r \in \mathbb{C}[t]$ such that $p^{3}+q^{3}-r^{3}=0$ identically. [Hint: See problem 2 in Problem Set 2.]
(ii) For these p, q, r, there is the matrix identity

$$
\left(\begin{array}{ccc}
p & q & r \\
p^{\prime} & q^{\prime} & r^{\prime}
\end{array}\right)\left(\begin{array}{c}
p^{2} \\
q^{2} \\
-r^{2}
\end{array}\right)=\binom{0}{0}
$$

where $p^{\prime}, q^{\prime}, r^{\prime}$ are the derivatives of p, q, r.
(iii) Hence $q r^{\prime}-r q^{\prime}, r p^{\prime}-p r^{\prime}, p q^{\prime}-q p^{\prime}$ are respectively divisible by p^{2}, q^{2}, r^{2}.
(iv) By examining the degrees of p, q, r, derive a contradiction.
(b) What if the base field is some other algebraically closed field k, instead of \mathbb{C} ? Does the conclusion of part (a) remain true for all such k ?
3. Let $X=\mathbb{A}^{2}$, let $P \in X$ be the origin, and let $\pi: \tilde{X} \rightarrow X$ be the blow-up of X at P. Let ϕ be the rational map from X to \mathbb{P}^{1} that sends (x, y) to $(x: y)$. Show explicitly that ϕ lifts to a morphism $\tilde{\phi}$ defined on \tilde{X}; i.e., there exists a morphism $\tilde{\phi}: \tilde{X} \rightarrow \mathbb{P}^{1}$ that defines the same rational map as $\phi \circ \pi$.
4. (a) Find a blow-up, or a sequence of blow-ups, that makes the curve $y^{2}=x^{5}$ smooth. Describe the proper transform and the total transform.
(b) Do the same for $y^{3}=x^{5}$.

