Read Hartshorne, Chapter I, sections 1-3.

1. In Hartshorne, Chapter I, do these problems:
2.5, 2.10, 2.14, 2.15, 3.1, 3.2.
2. (a) Let n be a positive integer, and let $X \subset \mathbb{A}_{\mathbb{C}}^{2}$ be the curve given by $x^{n}+y^{n}=1$. Show that $\mathbb{A}_{\mathbb{C}}^{1}$ is birationally isomorphic to X if and only if there exist relatively prime non-zero polynomials $p, q, r \in \mathbb{C}[t]$ such that $p^{n}+q^{n}-r^{n}=0$. [Hint: Is there an isomorphism of function fields?]
(b) What happens for $n=1$ and $n=2$?
3. In the context of problems 1.11 and 2.17(c) of Hartshorne, Chapter I, find two irreducible polynomials $f, g \in k[x, y, z]$ such that the zero locus $Z=Z(I)$ of the ideal $I:=(f, g)$ is a curve in \mathbb{A}^{3} that contains Y. Check whether $Z=Y$ and whether the ideal (f, g) is equal to $I(Y)$, for your choice of f, g. (If you're feeling ambitious, you could also try to do those starred problems in Hartshorne.)
4. Following Bourbaki, call a topological space quasi-compact if every open cover has a finite subcover. Call it compact if it is quasi-compact and Hausdorff.
(a) Show that every affine variety is quasi-compact in the Zariski topology, but that no affine variety, except for a finite set of points, is compact in the Zariski topology.
(b) Which affine varieties over \mathbb{C} are compact in the (classical) metric topology?
(c) Does your answer to (b) remain true over \mathbb{R} ?
