For each of the following, either give an example, or else prove that none exists.

1. A \mathbb{Z}-module that is not flat.
2. A non-zero finitely generated module M over the local ring $\mathbb{Z}_{(2)}$ such that $2 M=M$.
3. A commutative ring R, an R-module M, and a surjective homomorphism $N^{\prime} \rightarrow N$ of R-modules such that $\operatorname{Hom}_{R}\left(M, N^{\prime}\right) \rightarrow \operatorname{Hom}_{R}(M, N)$ is not surjective.
4. A finitely generated torsion-free \mathbb{Z}-module that is not projective.
5. A flat $\mathbb{C}[x]$-module that is not faithfully flat.
6. A Noetherian ring R such that $R[x, y]$ is not Noetherian.
7. A prime ideal in $\mathbb{C}[x, y, z] /\left(z^{2}-x y\right)$ of height 3 .
8. A maximal ideal in $\mathbb{Q}[x, y]$ that is not of the form $(x-a, y-b)$ with $a, b \in \mathbb{Q}$.
9. A Dedekind domain R such that $R[x]$ is a Dedekind domain.
10. A non-trivial integral ring extension of \mathbb{Z} that is contained in \mathbb{Q}.
11. Two unequal field extensions E, F of \mathbb{Q}, each of degree 3 and contained in $\overline{\mathbb{Q}}$, such that the compositum $E F$ does not have degree 9 over \mathbb{Q}.
12. A Galois field extension E of \mathbb{F}_{4} such that $\operatorname{Gal}\left(E / \mathbb{F}_{4}\right)$ is isomorphic to $\mathbb{Z} / 2 \times \mathbb{Z} / 2$.
13. A Galois field extension of $\mathbb{C}((x))$ having degree equal to 8 .
14. A Galois field extension L / K of degree 5 such that no non-zero element of L has trace equal to 0 .
15. An irreducible polynomial $f(x) \in \mathbb{Q}[x]$ whose splitting field has degree 24 over \mathbb{Q}, such that f is not solvable by radicals.
