Math 603

For each of the following, either give an example, or else prove that none exists.

- 1. A \mathbb{Z} -module that is not flat.
- 2. A non-zero finitely generated module M over the local ring $\mathbb{Z}_{(2)}$ such that 2M = M.

3. A commutative ring R, an R-module M, and a surjective homomorphism $N' \to N$ of R-modules such that $\operatorname{Hom}_R(M, N') \to \operatorname{Hom}_R(M, N)$ is not surjective.

- 4. A finitely generated torsion-free Z-module that is not projective.
- 5. A flat $\mathbb{C}[x]$ -module that is not faithfully flat.
- 6. A Noetherian ring R such that R[x, y] is not Noetherian.
- 7. A prime ideal in $\mathbb{C}[x, y, z]/(z^2 xy)$ of height 3.
- 8. A maximal ideal in $\mathbb{Q}[x, y]$ that is not of the form (x a, y b) with $a, b \in \mathbb{Q}$.
- 9. A Dedekind domain R such that R[x] is a Dedekind domain.
- 10. A non-trivial integral ring extension of \mathbb{Z} that is contained in \mathbb{Q} .

11. Two unequal field extensions E, F of \mathbb{Q} , each of degree 3 and contained in $\overline{\mathbb{Q}}$, such that the compositum EF does not have degree 9 over \mathbb{Q} .

- 12. A Galois field extension E of \mathbb{F}_4 such that $\operatorname{Gal}(E/\mathbb{F}_4)$ is isomorphic to $\mathbb{Z}/2 \times \mathbb{Z}/2$.
- 13. A Galois field extension of $\mathbb{C}((x))$ having degree equal to 8.

14. A Galois field extension L/K of degree 5 such that no non-zero element of L has trace equal to 0.

15. An irreducible polynomial $f(x) \in \mathbb{Q}[x]$ whose splitting field has degree 24 over \mathbb{Q} , such that f is not solvable by radicals.