- 1. Suppose $k \subset K$ is a separable field extension of degree n.
- a) Show that $K \approx k[x]/(f(x))$ for some irreducible polynomial $f(x) \in k[x]$ of degree n, and that $K \otimes_k K \approx K[y]/(f(y))$ as K-algebras. [Hint: Identify each side of the second isomorphism with k[x,y]/(f(x),f(y)).]
- b) Deduce that if K is Galois over k, then f(y) splits over K, and $K \otimes_k K \approx K^n$ as K-algebras. [Hint: Use separability and the Chinese Remainder Theorem.]
 - c) Verify (b) explicitly in the case that $k = \mathbb{Q}$ and $K = \mathbb{Q}(i)$.
 - d) If K is not Galois over k, is it still necessarily true that $K \otimes_k K \approx K^n$?
- 2. Let R be an ordered field (i.e. a field with an ordering " \leq " that satisfies the usual compatibilities with addition and multiplication) whose squares are the non-negative elements. Suppose that the elements of R[x] satisfy the intermediate value theorem with respect to the ordering (viewing these polynomials as functions from R to R). Let $C = R[x]/(x^2 + 1)$.
- a) Show that R has characteristic 0, and that every odd degree polynomial over R has a root in R. Deduce that every non-trivial Galois extension of R has even degree.
- b) Show that C is a field that strictly contains R, that every element of C is a square of an element of C, and that C has no field extensions of degree 2. [Hint: Quadratic formula.]
- c) Show that if $R \subset C \subseteq L$ are finite field extensions and L is Galois over R with group G, then G is a 2-group. [Hint: Let $H \subseteq G$ be a Sylow 2-subgroup, and let K be the fixed field of H.]
- d) In the situation of (c), show that L = C. [Hint: If not, Gal(L/C) has a subgroup E of index 2; and considering the extension $C \subseteq L^E$ (= fixed field) yields a contradiction.]
- e) Conclude that C is algebraically closed. [Hint: If $C \subset K$ is a non-trivial field extension, let L be the Galois closure of K over R, and apply (d).]
 - f) Deduce in particular that the field \mathbb{C} of complex numbers is algebraically closed.
- 3. a) Let p be a prime number, and let G be a subgroup of S_p . Suppose that G contains a transposition and a p-cycle. Show that $G = S_p$.
- b) Suppose that $f(x) \in K[x]$ is a separable irreducible polynomial of degree p (where p is prime), and let G be the Galois group of f over K. Show that G is a subgroup of S_p ; that p divides the order of G; and that G contains a p-cycle. [Hint: What is [K[x]/(f(x)):K]?]
- c) Suppose that $f(x) \in \mathbb{Q}[x]$ is irreducible of degree p and that exactly two of its roots do not lie in \mathbb{R} . Let G be the Galois group of f. Show that G contains a transposition, and deduce that G is isomorphic to S_p .
 - d) Deduce that $3x^5 6x 2$ is not solvable by radicals.
- 4. a) Prove that any polynomial $f(x) \in \mathbb{Q}[x]$ of degree < 5 is solvable by radicals.
- b) Find an $\alpha \in \overline{\mathbb{Q}}$ whose irreducible polynomial over \mathbb{Q} has degree 5, and is solvable by radicals.
- 5. Let p be a prime number, and let $K \subset L$ be a field extension of degree p that is separable but not Galois. Let \tilde{L} be the Galois closure of L over K. Show that \tilde{L} does not contain any subfield M which is Galois over K of degree p. [Hint: Observe that $\operatorname{Gal}(\tilde{L}/K) \subseteq S_p$, and then consider the order of $\operatorname{Gal}(\tilde{L}/LM)$.]
- 6. For which positive integers n is it possible, with straightedge and compass, to divide any given angle into n equal parts? Prove your assertion.