Optional problem for Math 603, spring 2016, Problem Set 11
Hilbert proved the following Irreducibility Theorem:
Theorem. Let $s_{1}, \ldots, s_{m}, x_{1}, \ldots, x_{n}$ be transcendentals over \mathbb{Q}, and consider an irreducible polynomial $f\left(s_{1}, \ldots, s_{m}, x_{1}, \ldots, x_{n}\right)$ over \mathbb{Q}. Then there exist $\alpha_{1}, \ldots, \alpha_{m} \in \mathbb{Q}$ such that $f\left(\alpha_{1}, \ldots, \alpha_{m}, x_{1}, \ldots, x_{n}\right)$ is an irreducible polynomial in $\mathbb{Q}\left[x_{1}, \ldots, x_{n}\right]$. Moreover, if a non-zero polynomial $g \in \mathbb{Q}\left[s_{1}, \ldots, s_{m}\right]$ is given in advance, then the α 's can be chosen so that $g\left(\alpha_{1}, \ldots, \alpha_{m}\right) \neq 0$.
a) Verify this explicitly in the case that $m=n=1, f(s, x)=x^{3}-s, g(s)=s^{2}-1$. Which values of α work?
b) Show that if $\mathbb{Q}\left(s_{1}, \ldots, s_{m}\right) \subseteq L$ is a finite field extension, then there is an irreducible polynomial $F \in \mathbb{Q}\left[s_{1}, \ldots, s_{m}, x\right]$ such that L is the fraction field of $\mathbb{Q}\left[s_{1}, \ldots, s_{m}, x\right] /(F)$.
c) Use Hilbert's theorem to show that there is an irreducible polynomial $f(x) \in \mathbb{Q}[x]$ such that the extension $\mathbb{Q} \subseteq \mathbb{Q}[x] /(f)$ is Galois with group S_{n}. [Hint: Part (b) and Problem Set 10 \#4.]
d) Still assuming Hilbert's theorem, conclude that the field K in problem 5 on Problem Set 11 can be chosen to be finite over \mathbb{Q}. [Hint: Reduce to the case of part (c) above.]

