1. Suppose that L is an algebraic extension of a field K that is purely inseparable. Let p be the characteristic of K. Let $F_{0}=\mathbb{F}_{p}(t)$ and let $F_{1}=F_{0}\left(t^{1 / p}\right)$. Show that there is an embedding $\phi: F_{1} \hookrightarrow L$ such that $\phi^{-1}(K)=F_{0}$, so that there is a diagram as follows:

2. Let $F=\mathbb{Z} / p \mathbb{Z}$, let $L=F(x, y)$, and let $K=F\left(x^{p}, y^{p}\right)$. Show that L is a finite field extension of K, but that there are infinitely many fields between K and L. Is $L=K[\alpha]$ for some $\alpha \in L$? Is L separable over K ?
3. Let K be a field, and for $i=1, \ldots, n$ let $s_{i} \in K\left[x_{1}, \ldots, x_{n}\right]$ be the i-th elementary symmetric polynomial in x_{1}, \ldots, x_{n}.
a) Show that if K is algebraically closed and if $a_{1}, \ldots, a_{n} \in K$ then there exist $b_{1}, \ldots, b_{n} \in K$ such that $s_{i}\left(b_{1}, \ldots, b_{n}\right)=a_{i}$ for all i. [Hint: Take the roots of the polynomial $\left.Z^{n}-a_{1} Z^{n-1}+a_{2} Z^{n-2}-\cdots+(-1)^{n} a_{n} \in K[Z].\right]$
b) Show that if $f\left(Y_{1}, \ldots, Y_{n}\right)$ is any non-zero polynomial in $K\left[Y_{1}, \ldots, Y_{n}\right]$, then the substitution $f\left(s_{1}, \ldots, s_{n}\right)$ is not the zero polynomial in $K\left[x_{1}, \ldots, x_{n}\right]$. [Hint: First reduce to the case that K is algebraically closed, by considering \bar{K}. Then use PS9 problem 8 and part (a) above.] This says that $s_{1}, \ldots, s_{n} \in K\left[x_{1}, \ldots, x_{n}\right]$ are algebraically independent.
4. a) In the notation of problem 3 , show that $K\left(x_{1}, \ldots, x_{n}\right)$ is the splitting field over $K\left(s_{1}, \ldots, s_{n}\right)$ of the polynomial $Z^{n}-s_{1} Z^{n-1}+s_{2} Z^{n-2}-\cdots+(-1)^{n} s_{n}$.
b) Show that the extension $K\left(s_{1}, \ldots, s_{n}\right) \subseteq K\left(x_{1}, \ldots, x_{n}\right)$ is Galois.
c) Show that the Galois group G is the symmetric group S_{n}. [Hint: Show that $S_{n} \subseteq G$ and that $|G|=\left[K\left(x_{1}, \ldots, x_{n}\right): K\left(s_{1}, \ldots, s_{n}\right)\right] \leq n!$.]
5. Let L be a normal field extension of K, and let K_{0} be the maximal purely inseparable extension of K contained in L. View L as contained in a fixed algebraic closure \bar{K} of K.
a) Let $\beta \in L$, and let $\beta_{1}, \ldots, \beta_{n} \in \bar{K}$ be the distinct images of β under the K embeddings $L \hookrightarrow \bar{K}$ (listing each image only once, regardless of multiplicity). Let $f(x)=$ $\prod\left(x-\beta_{i}\right)$. Show that $f(x) \in K_{0}[x]$. [Hint: Show $f(x) \in L[x]$, and then show that the coefficients of f are mapped to themselves under each K-embedding $L \hookrightarrow \bar{K}$.]
b) In part (a), show that $f(x)$ is the minimal polynomial of β over K_{0}. [Hint: Show that every β_{i} is a root of the minimal polynomial.]
c) Conclude that L is separable over K_{0}.
6. Let $K=\mathbb{F}_{p}(t)$ and let $L=K[\sqrt[2 p]{t}]$, where p is an odd prime number.
a) Find the maximal separable extension K^{\prime} of K in L, and the maximal purely inseparable extension K_{0} of K in L.
b) Show explicitly in this example that L is the compositum of K^{\prime} and K_{0}, by expressing $\sqrt[2 p]{t}$ as a combination of elements from K^{\prime} and K_{0}.
c) What if instead $p=2$?
7. a) Show that every purely inseparable extension is normal.
b) More generally, show that if M is normal over N, and N is purely inseparable over K, then M is normal over K.
