Math 603

1. Which of the following rings R are discrete valuation rings? For those that are, find the fraction field $K = \operatorname{frac} R$, the residue field $k = R/\mathfrak{m}$ (where \mathfrak{m} is the maximal ideal), and a uniformizer π . For the others, explain why not (full proofs not required). $\mathbb{Z}, \mathbb{Z}_{(5)}, \mathbb{Z}[1/5], \mathbb{R}[x], \mathbb{R}[x]_{(x-2)}, \mathbb{R}[x, 1/(x-2)], \mathbb{Q}[x]_{(x^2+1)}, \mathbb{C}[x, y]_{(x,y)}, (\mathbb{R}[x, y]/(x^2+y^2-1))_{(x-1,y)}, (\mathbb{R}[x, y]/(y^2-x^3))_{(x,y)}$.

a) Find the degree of α = √2 + √3 over Q, and also find its minimal polynomial.
b) Do the same for β = √3 + ³√2.
c) Is Q(α) normal over Q? Is Q(β)?

3. Let K be a field, and $f(x) \in K[x]$. Assume that K has characteristic 0. Let $n \ge 1$.

a) Let L be a finite field extension of K, and let $\alpha \in L$. Show that α is a root of f with multiplicity n if and only if $0 = f(\alpha) = f'(\alpha) = \cdots = f^{(n-1)}(\alpha) \neq f^{(n)}(\alpha)$.

b) Show that f has a root (in some extension of K) of multiplicity at least n if and only if $(f(x), f'(x), \ldots, f^{(n-1)}(x))$ is a proper ideal of K[x].

c) What if instead K has non-zero characteristic?

4. For each of the following fields K, explicitly find the group Aut K of all automorphisms of K (as a field): $\mathbb{Q}, \mathbb{Q}[\sqrt{2}], \mathbb{Q}[\sqrt{2}], \mathbb{Q}[\zeta_7], \mathbb{Q}[\zeta_3, \sqrt[3]{2}]$. (Here $\zeta_n = e^{2\pi i/n}$, a primitive *n*th root of unity.)

5. Let $K = \mathbb{Q}[\sqrt{2}]$ and $L = \mathbb{Q}[\sqrt{2 + \sqrt{2}}]$.

a) Find the multiplicative inverse of $\sqrt{2+\sqrt{2}}$ in L (as a polynomial in $\sqrt{2+\sqrt{2}}$).

b) Show $K \subset L$. What is $[K : \mathbb{Q}]$? [L : K]? $[L : \mathbb{Q}]$?

c) Let ϕ be an automorphism of L. What can you say about the restriction $\phi|_{\mathbb{Q}}$? What can you say about the restriction $\phi|_{K}$?

d) Find an element of order 4 in Aut L. What is the group Aut L abstractly?

e) Replace $\sqrt{2}$ by $\sqrt{3}$, and $\sqrt{2+\sqrt{2}}$ by $\sqrt{3+\sqrt{3}}$. Try to redo parts (a) - (d). Do the same results still hold?

6. Find all algebraic field extensions of \mathbb{R} . Justify your assertions. (You may assume that $\mathbb{C} = \mathbb{R}[i]$ is algebraically closed.)

7. Let K be a field with algebraic closure \overline{K} . Let $K^{s} = \{a \in \overline{K} \mid a \text{ is separable over } K\}$.

a) Show that K^{s} is a subfield of \overline{K} (called the *separable closure* of K).

b) Show that for every separable polynomial $f(x) \in K[x]$, the field K^{s} contains a root of f, and f(x) factors over K^{s} as the product of linear factors.

c) Show that K^{s} is normal over K.

8. a) Show that if K is an infinite field, and if $f(Y_1, \ldots, Y_n) \in K[Y_1, \ldots, Y_n]$ is a non-zero polynomial, then there exist $a_1, \ldots, a_n \in K$ such that $f(a_1, \ldots, a_n) \neq 0$. [Hint: Induction on n.]

b) What if K is finite?