1. Which of the following rings R are discrete valuation rings? For those that are, find the fraction field $K=\operatorname{frac} R$, the residue field $k=R / \mathfrak{m}$ (where \mathfrak{m} is the maximal ideal), and a uniformizer π. For the others, explain why not (full proofs not required). $\mathbb{Z}, \mathbb{Z}_{(5)}$, $\mathbb{Z}[1 / 5], \mathbb{R}[x], \mathbb{R}[x]_{(x-2)}, \mathbb{R}[x, 1 /(x-2)], \mathbb{Q}[x]_{\left(x^{2}+1\right)}, \mathbb{C}[x, y]_{(x, y)},\left(\mathbb{R}[x, y] /\left(x^{2}+y^{2}-1\right)\right)_{(x-1, y)}$, $\left(\mathbb{R}[x, y] /\left(y^{2}-x^{3}\right)\right)_{(x, y)}$.
2. a) Find the degree of $\alpha=\sqrt{2}+\sqrt{3}$ over \mathbb{Q}, and also find its minimal polynomial.
b) Do the same for $\beta=\sqrt{3+\sqrt[3]{2}}$.
c) Is $\mathbb{Q}(\alpha)$ normal over \mathbb{Q} ? Is $\mathbb{Q}(\beta)$?
3. Let K be a field, and $f(x) \in K[x]$. Assume that K has characteristic 0 . Let $n \geq 1$.
a) Let L be a finite field extension of K, and let $\alpha \in L$. Show that α is a root of f with multiplicity n if and only if $0=f(\alpha)=f^{\prime}(\alpha)=\cdots=f^{(n-1)}(\alpha) \neq f^{(n)}(\alpha)$.
b) Show that f has a root (in some extension of K) of multiplicity at least n if and only if $\left(f(x), f^{\prime}(x), \ldots, f^{(n-1)}(x)\right)$ is a proper ideal of $K[x]$.
c) What if instead K has non-zero characteristic?
4. For each of the following fields K, explicitly find the group Aut K of all automorphisms of K (as a field): $\mathbb{Q}, \mathbb{Q}[\sqrt{2}], \mathbb{Q}[\sqrt[3]{2}], \mathbb{Q}\left[\zeta_{7}\right], \mathbb{Q}\left[\zeta_{3}, \sqrt[3]{2}\right]$. (Here $\zeta_{n}=e^{2 \pi i / n}$, a primitive nth root of unity.)
5. Let $K=\mathbb{Q}[\sqrt{2}]$ and $L=\mathbb{Q}[\sqrt{2+\sqrt{2}}]$.
a) Find the multiplicative inverse of $\sqrt{2+\sqrt{2}}$ in L (as a polynomial in $\sqrt{2+\sqrt{2}}$).
b) Show $K \subset L$. What is $[K: \mathbb{Q}]$? $[L: K]$? $[L: \mathbb{Q}]$?
c) Let ϕ be an automorphism of L. What can you say about the restriction $\left.\phi\right|_{\mathbb{Q}}$? What can you say about the restriction $\left.\phi\right|_{K}$?
d) Find an element of order 4 in Aut L. What is the group Aut L abstractly?
e) Replace $\sqrt{2}$ by $\sqrt{3}$, and $\sqrt{2+\sqrt{2}}$ by $\sqrt{3+\sqrt{3}}$. Try to redo parts (a) - (d). Do the same results still hold?
6. Find all algebraic field extensions of \mathbb{R}. Justify your assertions. (You may assume that $\mathbb{C}=\mathbb{R}[i]$ is algebraically closed.)
7. Let K be a field with algebraic closure \bar{K}. Let $K^{\text {s }}=\{a \in \bar{K} \mid a$ is separable over $K\}$.
a) Show that $K^{\text {s }}$ is a subfield of \bar{K} (called the separable closure of K).
b) Show that for every separable polynomial $f(x) \in K[x]$, the field $K^{\text {s }}$ contains a root of f, and $f(x)$ factors over K^{s} as the product of linear factors.
c) Show that K^{s} is normal over K.
8. a) Show that if K is an infinite field, and if $f\left(Y_{1}, \ldots, Y_{n}\right) \in K\left[Y_{1}, \ldots, Y_{n}\right]$ is a non-zero polynomial, then there exist $a_{1}, \ldots, a_{n} \in K$ such that $f\left(a_{1}, \ldots, a_{n}\right) \neq 0$. [Hint: Induction on n.]
b) What if K is finite?
