1. Let V be an affine variety with ring of functions R, over an algebraically closed field k. Let $W \subseteq V$ be a subvariety and let $I \subset R$ be a proper ideal. Prove or disprove each of the following equivalences. If only one implication in an equivalence is true, prove that one. If any implication is false, give a counterexample.
a) W is an irreducible closed subset of $V \Leftrightarrow I(W)$ is an irreducible ideal of R.
b) $V(I)$ is an irreducible closed subset of $V \Leftrightarrow I$ is an irreducible ideal of R.
2. Let k be a field.
a) Prove that a proper ideal in $k[x]$ is primary if and only if it is a power of a prime ideal.
b) Let $R=k[x, y, z] /\left(x y-z^{2}\right)$. Let $I=(x, z) \subset R$. Show that I is prime but I^{2} is not primary. Do this explicitly by finding $a, b \in R$ such that $a b \in I^{2}$ but a is not in I^{2} and neither is any power of b.
3. Let \mathfrak{p} be a prime ideal in a commutative ring R.
a) Show that the symbolic power $\mathfrak{p}^{(n)}$ is primary, and that its associated prime is \mathfrak{p}.
b) Show that \mathfrak{p}^{n} is primary if and only if $\mathfrak{p}^{n}=\mathfrak{p}^{(n)}$. Explain the relationship to problem 2(b).
4. Let n be a square-free non-zero integer. Let R_{n} be the integral closure of \mathbb{Z} in $\mathbb{Q}(\sqrt{n})$. Show that $R_{n}=\mathbb{Z}\left[\frac{1+\sqrt{n}}{2}\right]$ if $n \equiv 1(\bmod 4)$, and that $R_{n}=\mathbb{Z}[\sqrt{n}]$ otherwise.
5. For each of the following rings R, determine whether R has a height one prime that is not principal. If there is one, find one explicitly. If there isn't one, determine whether there is some prime ideal that is not principal, and find one explicitly if it exists.
a) $\mathbb{Z}[i, x, y]$.
b) $\mathbb{Q}[x, y, z, w] /(x y-z w)$.
c) $\mathbb{Z}[\sqrt{-5}]$.
d) $\mathbb{Z}[x, y] /\left(5, y-x^{3}-x+1\right)$.
6. Let p be a prime number and let R be a commutative ring of characteristic p (i.e. $p \cdot 1=0$). Define the map $F: R \rightarrow R$ by $a \mapsto a^{p}$.
a) Show that F is a ring endomorphism (i.e. homomorphism from R to itself).
b) If R is a field, determine which elements lie in the set $\{a \in R \mid F(a)=a\}$. Do they form a ring? a field?
c) If R is a field, must F be injective? surjective? (Give a proof or counterexample for each.)
d) If R is a finite field, show that F is an automorphism.
7. Let K be a field and let G be a subgroup of the multiplicative group $K^{\times}=K-\{0\}$.
a) Show that if $a, b \in K$ have finite orders m, n, then there is a $c \in K$ whose order is the least common multiple of m, n. [Hint: First do the case of m, n relatively prime.]
b) Show that if G is finite then it is cyclic. [Hint: Let ℓ be the l.c.m. of the orders of the elements of G, and consider the roots of the polynomial $x^{\ell}-1$.]
c) Conclude that if $K \subseteq L$ is an extension of finite fields, then $L=K[a]$ for some $a \in L$. [Hint: What is the group structure of L^{\times}?]
