1. a) Let R be a Noetherian ring, \mathcal{I} the set of proper ideals of R, and \mathcal{I}_{0} a subset of \mathcal{I}. Let P be a property that ideals in \mathcal{I}_{0} may or may not have. Suppose that the following holds:
$\forall I \in \mathcal{I}_{0}$, if every ideal $J \in \mathcal{I}_{0}$ that properly contains I has property P, then so does I.
Conclude that P holds for all $I \in \mathcal{I}_{0}$.
b) Use this principle ("Noetherian induction") to prove that if R is a Noetherian integral domain, and $r \in R$ is a non-zero non-unit, then r is a product of irreducible elements of R. [Hint: What is \mathcal{I}_{0} ?]
c) What does the principle say if $R=\mathbb{Z}$?
d) Show that (b) (and therefore (a)) fails in general if R is not Noetherian.
2. Determine the Krull dimensions of the following rings: $\mathbb{R}\left[x, x^{-1}\right], \mathbb{C}[x, y, z] /\left(z^{2}-x y\right)$, $\mathbb{Z}[x, y] /\left(y^{2}-x\right), \mathbb{Q}[x, y, z] /\left(y^{2}, z^{3}\right), \mathbb{Q}[[x, y, z]], \quad \mathbb{Z}_{(2)}[x]$.
3. Given a commutative ring R, the maximal spectrum of R (denoted $\operatorname{Max} R$) is the set of maximal ideals of R. For each subset $E \subset R$, let $V(E)=\{\mathfrak{m} \in \operatorname{Max} R \mid E \subseteq \mathfrak{m}\} \subseteq \operatorname{Max} R$.
a) Show that $\operatorname{Max} R$ has a topology in which the closed sets are precisely the sets $V(E)$.
b) Show that $V(E)=V(I)$ for any $E \subset R$, where I is the ideal generated by E.
c) Show that $V(I)=V(\sqrt{I})$ for any ideal I.
d) Show that $V\left(\bigcup_{\alpha} E_{\alpha}\right)=\bigcap_{\alpha} V\left(E_{\alpha}\right)$ for any collection of subsets $\left\{E_{\alpha}\right\}_{\alpha \in A}$, and that $V\left(I_{1}+\cdots+I_{n}\right)=V\left(I_{1}\right) \cap \cdots \cap V\left(I_{n}\right)$ for any ideals I_{1}, \ldots, I_{n}.
e) Show that $V\left(I_{1} \cap \cdots \cap I_{n}\right)=V\left(I_{1}\right) \cup \cdots \cup V\left(I_{n}\right)$ for any ideals I_{1}, \ldots, I_{n} of R. Also explain the relationship with problem 5 on Problem Set 6 .
f) Give examples to illustrate (b) - (e) geometrically, for $R=\mathbb{R}[x]$.
g) If $R=\mathbb{C}[x, y] /(f)$, is there a continuous bijective map between $\operatorname{Max} R$ and the locus of zeroes of f in \mathbb{C}^{2} (under the usual topology)? In which direction?
4. Consider the rings $R=\mathbb{C}[x], \mathbb{C}[x, y], \mathbb{C}[x, y] /\left(x^{2}+y^{2}-1\right), \mathbb{C}[x, y] /\left(x^{2}-y^{2}\right), \mathbb{C}[x] /\left(x^{2}\right)$, $\mathbb{C}[x, y] /\left(x^{2}\right), \mathbb{C}, \mathbb{C} \times \mathbb{C}, \mathbb{C}[x] /\left(x^{2}-x\right), \mathbb{Z} / 2, \mathbb{Z} / 6, \mathbb{Z}, \mathbb{Z}[1 / 15]$. For each of them, do the following:
a) Describe all the maximal ideals in R, and describe $\operatorname{Max} R$ geometrically.
b) Determine whether Max R is connected (in the topology given in problem 3).
5. a) Let $R=\mathbb{C}[x, y] /\left(x^{2}-y^{2}\right)$ and $S=\mathbb{C}[x, y] /\left(x^{2}-x\right)$. Show that there is a homomorphism $f: R \rightarrow S$ given by $f(x)=y-2 x y, f(y)=y$. Show that there is an induced continuous $\operatorname{map} f^{*}: \operatorname{Max} S \rightarrow \operatorname{Max} R$ given by $\mathfrak{m} \mapsto f^{-1}(\mathfrak{m})$. Describe the map f^{*} geometrically. Is it injective? surjective? (A picture in the (x, y)-plane may help.)
b) In general, if $f: R \rightarrow S$ is a homomorphism of commutative rings, is there an induced continuous map $f^{*}: \operatorname{Max} S \rightarrow \operatorname{Max} R$? (What if $R=\mathbb{Z}$ and $S=\mathbb{Q}$?) What if we instead considered the prime spectrum of R and of S ? (The prime spectrum $\operatorname{Spec} R$ is defined as the set of prime ideals of R with the topology defined similarly to that of Max .)

6 . Let k be a field, and let $R=k[x, y]$.
a) Find the primary decompositions of the ideals $\left(y^{2}-x^{2}\right)$ and $\left(y^{2}-x^{2}\right)^{2}$. In each case, find the associated primes; determine whether the given ideal I is irreducible; and determine whether the closed subset determined by I is irreducible. [Caution: Be careful if char $k=2$.]
b) Consider the ideal $I=\left(x^{2}, x y\right)$ in R. Show that $(x) \cap\left(x^{2}, y\right)$ and $(x) \cap(x, y)^{2}$ are distinct primary decompositions of I. Find the associated primes for these two primary decompositions. Are there embedded primes? Is I irreducible? Is $V(I)$ an irreducible closed subset of 2-space over k ?

