Hints for problem 2 on Math 603, spring 2016, problem set 5

For (i) \Rightarrow (ii) and for (iv) \Rightarrow (i), use condition (iii) of problem 1. Also in (i) \Rightarrow (ii), what is the extension to A of a maximal ideal of R?

To deduce the contrapositive of (iv) from (ii), reduce to the case that N is generated by just one element, so that N is a quotient of R by an ideal I that is contained in a maximal ideal \mathfrak{m} of R; then use (ii) to get $\mathfrak{m}A \neq A$ and obtain the conclusion.

So (i) \Leftrightarrow (ii) \Leftrightarrow (iv).

The implication (iii) \Rightarrow (ii) is easy. For the converse, use (ii) \Rightarrow (i) to show that $A_{\mathfrak{p}} := A \otimes_R R_{\mathfrak{p}}$ is faithfully flat over $R_{\mathfrak{p}}$ for any prime ideal $\mathfrak{p} \subset R$, and then apply the implication (i) \Rightarrow (ii) to $A_{\mathfrak{p}}$ and $R_{\mathfrak{p}}$.