1. Let M be an R-module. Prove that the following conditions on M are equivalent:
i) M is faithfully flat (i.e. for every sequence of R-modules $N^{\prime} \rightarrow N \rightarrow N^{\prime \prime}$, the given sequence is exact iff $M \otimes N^{\prime} \rightarrow M \otimes N \rightarrow M \otimes N^{\prime \prime}$ is exact).
ii) For every complex of R-modules $N^{\prime} \rightarrow N \rightarrow N^{\prime \prime}$, the given complex is exact iff $M \otimes N^{\prime} \rightarrow M \otimes N \rightarrow M \otimes N^{\prime \prime}$ is exact.
iii) M is flat; and for every homomorphism of R-modules $\phi: N_{1} \rightarrow N_{2}, \phi$ is surjective iff $1 \otimes \phi: M \otimes N_{1} \rightarrow M \otimes N_{2}$ is surjective.
2. Let A be a flat R-algebra. Prove that the following conditions on A are equivalent:
i) A is faithfully flat over R.
ii) Every maximal ideal of R is the contraction of a maximal ideal of A.
iii) $\operatorname{Spec} A \rightarrow \operatorname{Spec} R$ is surjective.
iv) For every R-module N, if $A \otimes_{R} N=0$ then $N=0$.
[See the webpage for hints, if needed.]
3. For each of the following R-algebras A, determine whether A is a finitely generated R-module and whether it a finitely generated R-algebra. Also determine whether the R-module A is flat and whether it is faithfully flat.
a) Let $R=\mathbb{Z}$. Take $A=\mathbb{Z}[x] /(3 x), \mathbb{Z}[1 / 5], \mathbb{Z}[i], \mathbb{Z}[i, 1 / 5], \mathbb{Z}[i, 1 /(2+i)]$.
b) Let $A=\mathbb{R}[[x]]$. Take $R=\mathbb{R}, \mathbb{R}[x], R=\mathbb{R}[x]_{(x)}$.
4. Let $\phi: \mathbb{Z}^{2} \rightarrow \mathbb{Z}^{3}$ be given by the matrix

$$
\left(\begin{array}{ll}
1 & 4 \\
2 & 5 \\
3 & 6
\end{array}\right)
$$

and let M be the cokernel of ϕ.
a) Find all $n \in \mathbb{Z}$ such that the \mathbb{Z}-module M has (non-zero) n-torsion.
b) Is M free? flat? torsion free? projective?
c) Show that M has a finite free resolution.
d) For each prime number p, compute $M \otimes \mathbb{Z} / p=\operatorname{Tor}^{0}(M, \mathbb{Z} / p)$ and $\operatorname{Tor}^{1}(M, \mathbb{Z} / p)$.
e) For every \mathbb{Z}-module N and every $i \geq 2$, compute $\operatorname{Tor}^{i}(M, N)$.
5. Let M, N be R-modules, and let $0 \rightarrow N \rightarrow I_{0} \xrightarrow{f_{0}} I_{1} \xrightarrow{f_{7}} I_{2} \xrightarrow{f_{2}} \cdots$ be an injective resolution of N. Let $\phi \in \operatorname{Ext}^{1}(M, N)$, and choose a homomorphism $\Phi \in \operatorname{Hom}\left(M, I_{1}\right)$ representing ϕ (where we use the above resolution to compute Ext).
a) Show that $f_{1} \circ \Phi=0$, and deduce that Φ factors through a map $M \rightarrow I_{0} / N$.
b) Let $M^{\prime}=M \times_{I_{0} / N} I_{0}$, the fiber product of R-modules taken with respect to the above map $M \rightarrow I_{0} / N$ and the reduction map $I_{0} \rightarrow I_{0} / N$. Show that the first projection $\operatorname{map} M^{\prime} \rightarrow M$ is surjective and that its kernel is N.
c) We define $\operatorname{Ext}(M, N)$ to be the set of equivalence classes of extensions $0 \rightarrow N \rightarrow$ $L \rightarrow M \rightarrow 0$ of M by N. Explain how the above map $M^{\prime} \rightarrow M$ induces an element of $\operatorname{Ext}(M, N)$. This element is denoted by $c(\phi)$.
d) Show that $c: \operatorname{Ext}^{1}(M, N) \rightarrow \operatorname{Ext}(M, N)$ defines a bijection.

