${\rm Math}\ 603$

1. Let R be a commutative ring, and let M, N, S be R-modules. Assume that M is finitely presented and that S is flat. Consider the natural map

$$\alpha: S \otimes_R \operatorname{Hom}(M, N) \to \operatorname{Hom}(M, S \otimes_R N)$$

taking $s \otimes \phi$ (for $s \in S$ and $\phi \in \text{Hom}(M, N)$) to the homomorphism $m \mapsto s \otimes \phi(m)$.

a) Show that if M is a free R-module then α is an isomorphism. [Hint: If $M = R^n$, show that both sides are just $(S \otimes_R N)^n$.]

b) Suppose more generally that $R^a \to R^b \to M \to 0$ is a finite presentation for M. Show that the induced diagram

is commutative and has exact rows.

c) Using the Five Lemma and part (a), deduce that α is an isomorphism.

2. Let M and N be finitely generated modules over a commutative ring R, such that $M \otimes_R N = 0$.

a) Show that if R is a local ring with maximal ideal \mathfrak{m} , then M or N is 0. [Hint: Nakayama's Lemma.]

b) What if R is not local?

3. Let R be a commutative ring with Jacobson radical J. For $x \in R$, let P_x be the set of $r \in R$ such that $r \equiv 1 \pmod{x}$ (i.e. such that $r-1 \in xR$). Let R^{\times} denote the multiplicative group of units in R.

a) Show that $J = \{x \in R \mid P_x \subseteq R^{\times}\}.$

b) Let M be a finitely generated R-module and let $a_1, \ldots, a_n \in M$, where $n \ge 0$. Show that the R-module M is generated by a_1, \ldots, a_n if and only if the R/J-module M/JM is generated by the images of these elements. [Hint: Either generalize the proof of the local case, or else reduce to that case.]

c) Deduce that if M is a finitely generated R-module and M/JM = 0 then M = 0. Explain why this generalizes Nakayama's Lemma.

4. Let M be a finitely generated R-module. Prove that the following conditions on M are equivalent:

i) M is locally free over R (i.e. $M_{\mathfrak{m}}$ is free over $R_{\mathfrak{m}}$ for all maximal ideals $\mathfrak{m} \subset R$).

ii) For every maximal ideal $\mathfrak{m} \subset R$, there is an $f \notin \mathfrak{m}$ such that M_f is free over R_f .

iii) $\exists f_1, \ldots, f_n \in R$ such that $(f_1, \ldots, f_n) = 1$ and M_{f_i} is free over R_{f_i} for $i = 1, \ldots, n$. [Hint: In (ii) \Rightarrow (iii), what ideals contain the set $S = \{f \in R \mid M_f \text{ is free over } R_f\}$?]