1. Suppose that

is a commutative diagram of R-modules, with exact rows.
a) Show that if α_{1} is surjective and α_{2}, α_{4} are injective, then α_{3} is injective.
b) Show that if α_{5} is injective and α_{2}, α_{4} are surjective, then α_{3} is surjective.
c) In particular, deduce that α_{3} is an isomorphism provided that $\alpha_{1}, \alpha_{2}, \alpha_{4}, \alpha_{5}$ are. (The above result is the strong version of the "Five Lemma", which is named after the appearance of this diagram.)
2. Suppose that $0 \rightarrow M^{\prime} \xrightarrow{f} M \xrightarrow{g} M^{\prime \prime} \rightarrow 0$ is an exact sequence of R-modules. Let $M_{1} \subseteq$ $M_{2} \subseteq \cdots$ be a chain of R-submodules of M, and define $M_{i}^{\prime}=f^{-1}\left(M_{i}\right)$ and $M_{i}^{\prime \prime}=g\left(M_{i}\right)$.
a) Show that $M_{1}^{\prime} \subseteq M_{2}^{\prime} \subset \cdots$ is a chain of R-submodules of M^{\prime}.
b) Show that $M_{1}^{\prime \prime} \subseteq M_{2}^{\prime \prime} \subset \cdots$ is a chain of R-submodules of $M^{\prime \prime}$.
c) Show that if $i<j$, then the inclusion map $M_{i} \hookrightarrow M_{j}$ induces inclusions $M_{i}^{\prime} \hookrightarrow M_{j}^{\prime}$ and $M_{i}^{\prime \prime} \hookrightarrow M_{j}^{\prime \prime}$, and also induces the following commutative diagram with exact rows:

3. In the notation of problems 4 and 5 of Problem Set 1:
a) Show that $I \cap J=(y-4)$ and $I+J=(1)$ in R.
b) Let $\Delta: I \cap J \rightarrow I \oplus J$ be given by $\Delta(f)=(f, f)$, and let $-: I \oplus J \rightarrow I+J$ be given by $-(f, g)=f-g$. Show that the following sequence of R-modules is exact:

$$
\begin{equation*}
0 \rightarrow I \cap J \xrightarrow{\Delta} I \oplus J \xrightarrow{-} I+J \rightarrow 0 \tag{*}
\end{equation*}
$$

c) Show that the exact sequence $(*)$ is split. (Hint: What is $I+J$?)
d) Deduce that $I \oplus J$ is isomorphic to $(I \cap J) \oplus(I+J)$, and conclude that $I \oplus J$ is therefore free of rank 2 (thereby giving another proof of problem 5(c) of Problem Set 1).
4. In the notation of the above problem:
a) Explicitly find a section s of - , corresponding to a splitting of the exact sequence (*). (Hint: Find $(a, b) \in I \oplus J$ such that $a-b=1 \in R$.)
b) Explicitly find an isomorphism $\alpha:(I \cap J) \oplus(I+J) \rightarrow I \oplus J$ induced by the section in (a).
c) Show that problem 5 of Problem Set 1 also yields an isomorphism

$$
(I \cap J) \oplus(I+J) \rightarrow I \oplus J
$$

(Hint: Use problem 3(a) above.) Then compare that isomorphism with the isomorphism α in part (b) above.

