1. Suppose that

$$A_{1} \longrightarrow A_{2} \longrightarrow A_{3} \longrightarrow A_{4} \longrightarrow A_{5}$$

$$\downarrow^{\alpha_{1}} \qquad \downarrow^{\alpha_{2}} \qquad \downarrow^{\alpha_{3}} \qquad \downarrow^{\alpha_{4}} \qquad \downarrow^{\alpha_{5}}$$

$$B_{1} \longrightarrow B_{2} \longrightarrow B_{3} \longrightarrow B_{4} \longrightarrow B_{5}$$

is a commutative diagram of R-modules, with exact rows.

- a) Show that if α_1 is surjective and α_2, α_4 are injective, then α_3 is injective.
- b) Show that if α_5 is injective and α_2, α_4 are surjective, then α_3 is surjective.
- c) In particular, deduce that α_3 is an isomorphism provided that $\alpha_1, \alpha_2, \alpha_4, \alpha_5$ are. (The above result is the strong version of the "Five Lemma", which is named after the appearance of this diagram.)
- 2. Suppose that $0 \to M' \xrightarrow{f} M \xrightarrow{g} M'' \to 0$ is an exact sequence of R-modules. Let $M_1 \subseteq M_2 \subseteq \cdots$ be a chain of R-submodules of M, and define $M'_i = f^{-1}(M_i)$ and $M''_i = g(M_i)$.
 - a) Show that $M_1' \subseteq M_2' \subset \cdots$ is a chain of R-submodules of M'.
 - b) Show that $M_1'' \subseteq M_2'' \subset \cdots$ is a chain of R-submodules of M''.
- c) Show that if i < j, then the inclusion map $M_i \hookrightarrow M_j$ induces inclusions $M'_i \hookrightarrow M'_j$ and $M''_i \hookrightarrow M''_j$, and also induces the following commutative diagram with exact rows:

$$0 \longrightarrow M'_i \longrightarrow M_i \longrightarrow M''_i \longrightarrow 0$$

$$\downarrow \qquad \qquad \qquad \downarrow \qquad$$

- 3. In the notation of problems 4 and 5 of Problem Set 1:
 - a) Show that $I \cap J = (y 4)$ and I + J = (1) in R.
- b) Let $\Delta: I \cap J \to I \oplus J$ be given by $\Delta(f) = (f, f)$, and let $-: I \oplus J \to I + J$ be given by -(f, g) = f g. Show that the following sequence of R-modules is exact:

$$0 \to I \cap J \stackrel{\Delta}{\to} I \oplus J \stackrel{-}{\to} I + J \to 0 \tag{*}$$

- c) Show that the exact sequence (*) is split. (Hint: What is I + J?)
- d) Deduce that $I \oplus J$ is isomorphic to $(I \cap J) \oplus (I + J)$, and conclude that $I \oplus J$ is therefore free of rank 2 (thereby giving another proof of problem 5(c) of Problem Set 1).
- 4. In the notation of the above problem:
- a) Explicitly find a section s of -, corresponding to a splitting of the exact sequence (*). (Hint: Find $(a,b) \in I \oplus J$ such that $a-b=1 \in R$.)
- b) Explicitly find an isomorphism $\alpha: (I \cap J) \oplus (I+J) \to I \oplus J$ induced by the section in (a).
 - c) Show that problem 5 of Problem Set 1 also yields an isomorphism

$$(I \cap J) \oplus (I+J) \to I \oplus J.$$

(Hint: Use problem 3(a) above.) Then compare that isomorphism with the isomorphism α in part (b) above.