1. In the situation of PS11, problem 5:
a) Let $T \subset \mathbb{R}^{3}$ be the tangent plane to S^{2} at P. Thus $T=\{(x, y, 1) \mid x, y \in \mathbb{R}\}$. Show that T is a 2 -dimensional vector space over \mathbb{R}, under the addition $(x, y, 1)+\left(x^{\prime}, y^{\prime}, 1\right)=$ $\left(x+x^{\prime}, y+y^{\prime}, 1\right)$ and scalar multiplication $c(x, y, 1)=(c x, c y, 1)$. What is the 0 -vector?
b) Let $f \in T^{*}$, the dual space of T. Show that $f: T \rightarrow \mathbb{R}$ extends to a unique linear functional $\tilde{f}: \mathbb{R}^{3} \rightarrow \mathbb{R}$. Let $\bar{f}: S^{2} \rightarrow \mathbb{R}$ be the restriction of \tilde{f} to S^{2}. Show that $\bar{f} \in R$, and moreover $\bar{f} \in I$.
c) If $f \in T^{*}$, let $\phi(f) \in I / I^{2}$ be the image of $\bar{f} \in I$ under $I \rightarrow I / I^{2}$. Show that $\phi: T^{*} \rightarrow I / I^{2}$ is an isomorphism of vector spaces.
d) Conclude that T is isomorphic to $\left(I / I^{2}\right)^{*}$ via ϕ^{*}.

Remark. This problem works more generally for any smooth space $S \subseteq \mathbb{R}^{n}$ defined by polynomials. Often, geometers turn this problem on its head and define the tangent space to be $\left(I / I^{2}\right)^{*}$. The advantage is that this makes T intrinsic to S, rather than depending on the way that S is embedded in \mathbb{R}^{n}.
2. Let V be a finite dimensional vector space over a field K of characteristic zero, and let $T \in \operatorname{End} V$. If $W \subseteq V$, call W a T-irreducible subspace if W is T-invariant (i.e. $T(W) \subseteq W)$ and the only T-invariant subspaces of W are 0 and W.
a) Suppose that $T \in \operatorname{End}(V)$ has order n in $\operatorname{End}(V)$ under composition, and that $W \subseteq V$ is a T-invariant subspace. Show that W has a T-invariant complement W^{\prime}. [Hint: Pick an arbitrary complement $W^{\prime \prime}$, i.e. $V=W \times W^{\prime \prime}$. Let $P: V=W \times W^{\prime \prime} \rightarrow W$ be the first projection map, and define $S: V \rightarrow V$ by $v \mapsto \frac{1}{n} \sum_{i=0}^{n-1} T^{i} P T^{-i}(v)$. Show $S^{2}=S$. Then consider $\operatorname{ker} S$ and $\operatorname{im} S$.]
b) Under the hypotheses of (a), show that V can be written as the direct product of T-irreducible subspaces.
c) What if T does not have finite order in $\operatorname{End}(V)$?
d) What if K does not have characteristic zero?
3. Let V be a vector space and let $G \subseteq$ Aut V be a finite subgroup. Say that $W \subseteq V$ is G-invariant if it is T-invariant for every $T \in G$. Say that $W \subseteq V$ is G-irreducible if W is G-invariant and the only G-invariant subspaces of W are 0 and W.
a) If V is a finite dimensional vector space over a field of characteristic zero, show that V can be written as the direct product of G-irreducible subspaces. [Hint: Generalize the argument in problem 2.]
b) What can you say about the conclusion of part (a) if the field of scalars is not necessarily of characteristic zero?
4. a) Consider the quadratic form $q=\langle 1,1\rangle$ over \mathbb{Q}. For which $c \in \mathbb{Q}^{\times}$is the form $c \cdot q:=\langle c, c\rangle$ isometric to q ? [Hint: Which values does $c \cdot q$ take on?]
b) Let $h=\langle 1,-1\rangle$ over a field K of characteristic $\neq 2$. Show that for every $c \in K^{\times}$, the form $c \cdot h:=\langle c,-c\rangle$ is isometric to h, and so is hyperbolic. [Hint: After a change of variables, h becomes $x y$. What about $c \cdot h$?]
c) Let q be the quadratic form $\langle 1,1,1\rangle$ over the field of 3 elements. Find the Witt decomposition of q explicitly.

