1. Let n be an integer, and let $\alpha_{1}, \ldots, \alpha_{n+1}$ be distinct real numbers. Let $P_{n} \subset \mathbb{R}[x]$ be the vector space of polynomials of degree $\leq n$. Define $F: P_{n} \rightarrow \mathbb{R}^{n+1}$ by $f \mapsto$ $\left(f\left(\alpha_{1}\right), \ldots, f\left(\alpha_{n+1}\right)\right)$.
a) Show that F is an isomorphism. [Hint: $\operatorname{dim} P_{n}=$? $\operatorname{ker} F=$?]
b) Explicitly find $F^{-1}\left(e_{1}\right), \ldots F^{-1}\left(e_{n+1}\right)$ (where e_{1}, \ldots, e_{n+1} are the standard basis vectors in $\left.\mathbb{R}^{n+1}\right)$ in the case $n=3, \alpha_{j}=j(j=1,2,3,4)$. [Hint: where does the polynomial $(x-a)(x-b)(x-c)$ vanish?]
c) Deduce that $F^{-1}\left(e_{1}\right), \ldots F^{-1}\left(e_{n+1}\right)$ form a basis of P_{n}. In the case considered in (b), express x as a linear combination of them.
2. Call $T \in \operatorname{End}(V)$ an idempotent if $T^{2}=T$. Show that if V is finite dimensional and T is an idempotent, then there are subspaces $X, Y \subset V$ such that $V=X \times Y,\left.T\right|_{X}=0$, $\left.T\right|_{Y}=$ identity. Deduce that with respect to some basis of V, the idempotent map T is given by a diagonal matrix whose diagonal entries are of the form $(1,1, \ldots, 1,0,0, \ldots, 0)$.
3. Let V, W, Y be finite dimensional vector spaces over K.
a) Show that there are natural isomorphisms $(V \otimes W)^{*}=V^{*} \otimes W^{*}=\operatorname{Hom}\left(V, W^{*}\right)=$ $\operatorname{Hom}\left(W, V^{*}\right)$.
b) Show that there is a natural isomorphism $\operatorname{Hom}(V \otimes W, Y)=\operatorname{Hom}(V, \operatorname{Hom}(W, Y))$.
c) Show that $\operatorname{Hom}(V \otimes W, Y)$ is naturally isomorphic to the vector space of bilinear maps $V \times W \rightarrow Y$.
4. a) Let V be a K-vector space and let $0 \rightarrow W^{\prime} \rightarrow W \rightarrow W^{\prime \prime} \rightarrow 0$ be an exact sequence of K-vector spaces. Show that the induced sequences $0 \rightarrow V \otimes W^{\prime} \rightarrow V \otimes W \rightarrow V \otimes W^{\prime \prime} \rightarrow$ $0 ; 0 \rightarrow \operatorname{Hom}\left(V, W^{\prime}\right) \rightarrow \operatorname{Hom}(V, W) \rightarrow \operatorname{Hom}\left(V, W^{\prime \prime}\right) \rightarrow 0 ;$ and $0 \rightarrow \operatorname{Hom}\left(W^{\prime \prime}, V\right) \rightarrow$ $\operatorname{Hom}(W, V) \rightarrow \operatorname{Hom}\left(W^{\prime}, V\right) \rightarrow 0$ are also exact. [Hint: Choose a basis for V.]
b) What if instead we consider modules over a ring R ?

5 . Let R be the ring of polynomial functions on the unit sphere $S^{2} \subset \mathbb{R}^{3}$. Thus this ring is given by $R=\mathbb{R}[x, y, z] /\left(x^{2}+y^{2}+z^{2}-1\right)$.
a) Let $P=(0,0,1) \in S^{2}$, and let $R_{P}=\left\{\left.\frac{f}{g} \right\rvert\, f, g \in R ; g(P) \neq 0\right\}$. Show directly that R_{P} is a local ring (i.e. has exactly one maximal ideal I), and find a set of generators for I.
b) Show that $I^{2} \subset I$ but that $I^{2} \neq I$. Let I / I^{2} be the image of I under the ring homomorphism $R_{P} \rightarrow R_{P} / I^{2}$. Show that I / I^{2} is a 2-dimensional vector space over \mathbb{R}. [Hint: Find a basis, using that $z-1=\frac{-1}{z+1} \cdot\left(x^{2}+y^{2}\right) \in I^{2}$.]
6. a) For K a field, suppose that $A \in M_{n}(K)$ is strictly upper triangular (i.e. A is upper triangular, and the diagonal entries are all 0). Show that A is nilpotent, and find the index of nilpotence (i.e. the minimal m such that $A^{m}=0$).
b) Show that if S and T are upper triangular, then their bracket $[S, T]:=S T-T S$ is nilpotent.
c) Let A_{0} be the set of upper triangular matrices in $M_{n}(K)$. Show that A_{0} is a Lie algebra, in the sense that it is closed under addition, scalar multiplication, and bracket. Also, inductively define A_{i} by $A_{i+1}=\left[A_{i}, A_{i}\right]=\left\langle[S, T] \mid S, T \in A_{i}\right\rangle$. Show that some $A_{r}=0$. (A_{0} is thus called solvable, in analogy with the fact that a finite group is solvable iff its successive commutators terminate in the trivial group.)

