1. If $I, J \subseteq R$ are ideals in a commutative ring, define the ideal quotient $(I: J) \subseteq R$ to be $\{a \in R \mid a J \subseteq I\}$. Show that this is an ideal. If $R=\mathbb{Z}$, prove that $((m):(n))=$ $(m / \operatorname{gcd}(m, n))$.
2. If $R \subseteq S$ are commutative rings and $I \subseteq R$ is an ideal of R, call $I S \subseteq S$ the extension of I to S. If $J \subseteq S$ is an ideal of S, call $J \cap R \subseteq R$ the contraction of J to R.
a) Are extensions and contractions of ideals always ideals? What about proper ideals? Are extension and contraction inverse operations?
b) For which prime ideals of \mathbb{Z} is the extension to $\mathbb{Z}[i]$ also prime? For those that are not, which extensions are the product of two distinct prime ideals, and which are the square of a prime ideal of $\mathbb{Z}[i]$? (Of these two cases, the former case is called split and the latter case is called ramified.)
c) Show that taking contraction induces a surjection from the prime ideals of $\mathbb{Z}[i]$ to the prime ideals of \mathbb{Z}. Is it injective?
d) Do your assertions in part (c) hold for an arbitrary extension of integral domains $R \subseteq S$?
3. a) Let $V=\{$ differentiable functions on $\mathbb{R}\}$. Prove that the functions $e^{x}, e^{2 x}, e^{3 x}$ are linearly independent in the real vector space V. [Hint: If not, differentiate twice.]
b) Let W be the set of solutions to the differential equation $f^{\prime \prime}-f=0$, and let V be the set of solutions to $f^{\prime \prime \prime}-f^{\prime}=0$. Show that W is a vector subspace of V, find a basis for W, and extend this basis to a basis of V.
4. a) If V and W are vector spaces over a field K, and if $F: V \rightarrow W$ is a homomorphism, let $F^{*}: W^{*} \rightarrow V^{*}$ be the map on dual spaces given by $F^{*}(\phi)=\phi \circ F$. Show that $F \mapsto F^{*}$ defines a homomorphism $\operatorname{Hom}(V, W) \rightarrow \operatorname{Hom}\left(W^{*}, V^{*}\right)$. Show that this homomorphism is natural, in the sense that $(F \circ G)^{*}=G^{*} \circ F^{*}$ if $F: V \rightarrow W, G: U \rightarrow V$.
b) Show that the above map $\operatorname{Hom}(V, W) \rightarrow \operatorname{Hom}\left(W^{*}, V^{*}\right)$ is an isomorphism if V and W are finite dimensional.
c) Show that if $0 \rightarrow U \rightarrow V \rightarrow W \rightarrow 0$ is exact, then so is $0 \rightarrow W^{*} \rightarrow V^{*} \rightarrow U^{*} \rightarrow 0$.
d) What if instead we consider modules over a ring R ?
5. For any finite dimensional vector space V with basis $B=\left\{e_{1}, \ldots, e_{n}\right\}$, and dual basis $B^{*}=\left\{\delta_{1}, \ldots, \delta_{n}\right\}$ of V^{*}, define $\phi_{V, B}: V \rightarrow V^{*}$ by $\sum_{1}^{n} a_{i} e_{i} \mapsto \sum_{1}^{n} a_{i} \delta_{i}$, and let $\psi_{V, B}=\phi_{V^{*}, B^{*}} \circ \phi_{V, B}$.
a) Show that $\phi_{V, B}: V \rightarrow V^{*}$ is an isomorphism, but that it depends on the choice of B.
b) Show that $\psi_{V, B}: V \rightarrow V^{* *}$ is an isomorphism that is independent of the choice of B (so we may denote it by ψ_{V}). For $v \in V$, show that $\psi_{V}(v)$ is the element of $V^{* *}$ taking $f \in V^{*}$ to $f(v)$.
c) Show that the association $V \mapsto \psi_{V}$ is natural in the following sense: If $F: V \rightarrow W$ is a vector space homomorphism with induced homomorphism $F^{* *}: V^{* *} \rightarrow W^{* *}$ (notation as in problem 4), then $\psi_{W} \circ F=F^{* *} \circ \psi_{V}$.
