1. Find two extensions G of a fixed finite group B by a fixed finite abelian group A such that the two groups G are isomorphic as groups, but such that the two extensions $1 \rightarrow A \rightarrow G \rightarrow B \rightarrow 1$ are not isomorphic as extensions of B by A. [Hint: Try $A=C_{3}^{2}$ and $B=C_{2}$.]
2. Show that there is a unique group action of $\mathbb{Z} / 2$ on $\mathbb{Z} / 2$. With respect to that action, directly compute the groups $C^{2}(\mathbb{Z} / 2, \mathbb{Z} / 2), Z^{2}(\mathbb{Z} / 2, \mathbb{Z} / 2), B^{2}(\mathbb{Z} / 2, \mathbb{Z} / 2), H^{2}(\mathbb{Z} / 2, \mathbb{Z} / 2)$. In the case of H^{2}, interpret each element in terms of an extension of $\mathbb{Z} / 2$ by $\mathbb{Z} / 2$.
3. With respect to each of the actions of $\mathbb{Z} / 2$ on $\mathbb{Z} / 3$, compute $H^{0}(\mathbb{Z} / 2, \mathbb{Z} / 3), H^{1}(\mathbb{Z} / 2, \mathbb{Z} / 3)$, $H^{2}(\mathbb{Z} / 2, \mathbb{Z} / 3)$. How does each H^{2} relate to group extensions?
4. Let G be a finite group and let p be a prime number. Show that G contains a subgroup F of order prime to p such that for every quotient $E:=G / N$ of G of order prime to p, the composition $F \hookrightarrow G \rightarrow E$ is surjective. Do this in steps as follows:
i) Let $Q \subseteq G$ be the subgroup generated by all the Sylow p-subgroups of G. Let P be a Sylow p-subgroup of G, and let $G^{\prime}=N_{G}(P)$. Show that Q is a normal subgroup of G, and that the quotient map $\pi: G \rightarrow H:=G / Q$ restricts to a surjection $\pi^{\prime}: G^{\prime} \rightarrow H$. [Hint: Say $\pi(g)=h$. Must P and $g P g^{-1}$ be conjugate subgroups of Q ? Does this yield an element of G^{\prime} that maps to h ?] Show that H is the largest quotient of G of order prime to p.
ii) Deduce that G^{\prime} (and hence also G) contains a subgroup F having order prime to p such that $\pi(F)=H$, and that F has the desired property. [Hint: With $Q^{\prime}=N_{Q}(P)$, consider the exact sequences $1 \rightarrow Q^{\prime} \rightarrow G^{\prime} \rightarrow H \rightarrow 1,1 \rightarrow P \rightarrow G^{\prime} \rightarrow G^{\prime} / P \rightarrow 1$, and $1 \rightarrow Q^{\prime} / P \rightarrow G^{\prime} / P \rightarrow H \rightarrow 1$, and apply Schur-Zassenhaus to one of them.]
5. Let $0 \rightarrow A \xrightarrow{i} G \xrightarrow{\pi} B \rightarrow 1$ be a short exact sequence of finite groups, with A abelian (written additively). For each $b \in B$ pick some $g_{b} \in G$ such that $\pi\left(g_{b}\right)=b$. Define an action α of B on A by $b \cdot a=g_{b} a g_{b}^{-1}$. For $b_{1}, b_{2} \in B$, define $f\left(b_{1}, b_{2}\right) \in A$ by $g_{b_{1}} g_{b_{2}}=f\left(b_{1}, b_{2}\right) g_{b_{1} b_{2}}$.
a) Verify that $f \in Z_{\alpha}^{2}(B, A)$; i.e. that $f\left(b_{1}, b_{2}\right)+f\left(b_{1} b_{2}, b_{3}\right)=b_{1} \cdot f\left(b_{2}, b_{3}\right)+f\left(b_{1}, b_{2} b_{3}\right)$. [Hint: Evaluate $g_{b_{1}} g_{b_{2}} g_{b_{3}}$ in two ways.]
b) Verify that $\left(a_{1} g_{b_{1}}\right)\left(a_{2} g_{b_{2}}\right)=\left(a_{1}+b_{1} \cdot a_{2}+f\left(b_{1}, b_{2}\right)\right) g_{b_{1} b_{2}} \in G$ for $a_{1}, a_{2} \in A$ and $b_{1}, b_{2} \in B$, giving the multiplication law in G.
c) Suppose that for each $b \in B$ we have another choice $g_{b}^{\prime} \in G$ of an element in G with $\pi\left(g_{b}^{\prime}\right)=b$, and let f^{\prime} be the analogous element of $Z_{\alpha}^{2}(B, A)$. For each $b \in B$ define $e(b) \in A$ by $g_{b}^{\prime}=e(b) g_{b}$. Verify that $f^{\prime}\left(b_{1}, b_{2}\right)-f\left(b_{1}, b_{2}\right)=e\left(b_{1}\right)+b_{1} \cdot e\left(b_{2}\right)-e\left(b_{1} b_{2}\right)$; i.e. f, f^{\prime} differ by an element of $B_{\alpha}^{2}(B, A)$. [Hint: Evaluate $g_{b_{1}}^{\prime} g_{b_{2}}^{\prime}$ in two ways.]
