Quadratic Forms (Math 520/620/702)

Problem Set #5

Due Wed., Dec. 7, 2011, in class.

1. a) Which of the following elements lie in $\mathbb{F}_3((t))$? For each one that does, find this element explicitly, i.e. in the form $\sum_{i=n}^{\infty} a_i t^i$, where $n \in \mathbb{Z}$ and each $a_i \in \mathbb{F}_3$.

$$\frac{1+t^3}{t^2}, \frac{1}{1-t}, \sqrt{1+t}, \sqrt{t}, \sqrt{2+t}$$

b) Which of the following elements lie in \mathbb{Q}_3 ? For each one that does, find this element explicitly, i.e. in the form $\sum_{i=n}^{\infty} a_i 3^i$, where $n \in \mathbb{Z}$ and each $a_i \in \mathbb{Z}$. If you can, write the element in a form so that each $a_i \in \{0, 1, 2\}$. $\frac{41}{2} - \frac{1}{2} - \frac{1}{2} - \sqrt{2} - \sqrt{2}$

$$\overline{9}, \ -\overline{2}, \ \overline{2}, \ \sqrt{7}, \ \sqrt{2}, \ \sqrt{3}$$

2. a) Prove the product formula for absolute values on \mathbb{Q} . That is, show that if $a \neq 0$, then

$$\prod_{v \in \Omega} |a|_v = 1$$

(Here, $\Omega = \{\infty, 2, 3, 5, ...\}$ indexes the equivalence classes of non-trivial absolute values on \mathbb{Q} .)

b) State and prove the analogous statement for $\mathbb{F}_p(t)$.

3. a) Prove that for every positive integer N there is an integer n such that

$$n^3 - 5n \equiv 3 \pmod{5^N}.$$

[Hint: Use \mathbb{Q}_5 .]

b) Find such an n if N = 3.

[Hint: Use Newton's Method: $x_{i+1} = x_i - \frac{f(x_i)}{f'(x_i)} \pmod{5^{i+1}}$.]

4. a) Find all anisotropic quadratic forms over $\mathbb{F}_3((t))$ up to equivalence.

b) Which of these forms remain anisotropic over $\mathbb{F}_9((t))$? Which of them become isometric to each other over $\mathbb{F}_9((t))$?

c) Redo part (b) with $\mathbb{F}_3((\sqrt{t}))$ instead of $\mathbb{F}_9((t))$.

5. a) Show that the Hilbert symbol $(,)_p := (,)_{\mathbb{Q}_p}$ is symmetric, bimultiplicative (i.e. $(a, bc)_p = (a, b)_p (a, c)_p$, and similarly with the entries reversed), and satisfies $(a, 1-a)_p = 1$ if $a, 1-a \in \mathbb{Q}_p^{\times}$.

b) For each odd prime number p, determine whether there is an element $z_p \in \mathbb{Q}_p^{\times}$ such $(-1, z_p)_p = -1$. If there is, find such a z_p explicitly.

6. Consider the following quadratic forms over \mathbb{Q} :

$$q_1 = \langle 1, 1, 1, -1 \rangle, \ q_2 = \langle 1, 1, 1, -7 \rangle, \ q_3 = \langle 1, 1, 1, 1, 1 \rangle.$$

a) For each *i*, determine whether the form q_i is isotropic over \mathbb{Q} .

b) For each *i*, find all the completions of \mathbb{Q} (i.e. \mathbb{Q}_p or \mathbb{R}) over which q_i is isotropic. Does your answer, in conjunction with your answer to part (a), agree with Hasse-Minkowski?

7. Let q be a quadratic form over a global field F, and let Ω be the set of (equivalence classes of) non-trivial absolute values on F.

a) Prove that q is hyperbolic over F if and only if it is hyperbolic over F_v for all $v \in \Omega$.

b) Let i_W denote the Witt index of a quadratic form, and for $v \in \Omega$ let q_v denote q viewed as a form over F_v . Prove that $i_W(q) = \min_{v \in \Omega} i_W(q_v)$.

8. From the exercises in Lam, Chapter VI (pages 183-186), do problems 5-7. [Hint: See Examples 2.32-2.34 in Chapter VI.]