1. a) Which of the following elements lie in $\mathbb{F}_{3}((t))$? For each one that does, find this element explicitly, i.e. in the form $\sum_{i=n}^{\infty} a_{i} t^{i}$, where $n \in \mathbb{Z}$ and each $a_{i} \in \mathbb{F}_{3}$.

$$
\frac{1+t^{3}}{t^{2}}, \frac{1}{1-t}, \sqrt{1+t}, \sqrt{t}, \sqrt{2+t}
$$

b) Which of the following elements lie in \mathbb{Q}_{3} ? For each one that does, find this element explicitly, i.e. in the form $\sum_{i=n}^{\infty} a_{i} 3^{i}$, where $n \in \mathbb{Z}$ and each $a_{i} \in \mathbb{Z}$. If you can, write the element in a form so that each $a_{i} \in\{0,1,2\}$.

$$
\frac{41}{9},-\frac{1}{2}, \frac{1}{2}, \sqrt{7}, \sqrt{2}, \sqrt{3}
$$

2. a) Prove the product formula for absolute values on \mathbb{Q}. That is, show that if $a \neq 0$, then

$$
\prod_{v \in \Omega}|a|_{v}=1
$$

(Here, $\Omega=\{\infty, 2,3,5, \ldots\}$ indexes the equivalence classes of non-trivial absolute values on Q.)
b) State and prove the analogous statement for $\mathbb{F}_{p}(t)$.
3. a) Prove that for every positive integer N there is an integer n such that

$$
n^{3}-5 n \equiv 3\left(\bmod 5^{N}\right)
$$

[Hint: Use \mathbb{Q}_{5}.]
b) Find such an n if $N=3$.
[Hint: Use Newton's Method: $x_{i+1}=x_{i}-\frac{f\left(x_{i}\right)}{f^{\prime}\left(x_{i}\right)}\left(\bmod 5^{i+1}\right)$.]
4. a) Find all anisotropic quadratic forms over $\mathbb{F}_{3}((t))$ up to equivalence.
b) Which of these forms remain anisotropic over $\mathbb{F}_{9}((t))$? Which of them become isometric to each other over $\mathbb{F}_{9}((t))$?
c) Redo part (b) with $\mathbb{F}_{3}((\sqrt{t}))$ instead of $\mathbb{F}_{9}((t))$.
5. a) Show that the Hilbert symbol $(,)_{p}:=(,)_{\mathbb{Q}_{p}}$ is symmetric, bimultiplicative (i.e. $(a, b c)_{p}=(a, b)_{p}(a, c)_{p}$, and similarly with the entries reversed), and satisfies $(a, 1-a)_{p}=1$ if $a, 1-a \in \mathbb{Q}_{p}^{\times}$.
b) For each odd prime number p, determine whether there is an element $z_{p} \in \mathbb{Q}_{p}^{\times}$such $\left(-1, z_{p}\right)_{p}=-1$. If there is, find such a z_{p} explicitly.
6. Consider the following quadratic forms over \mathbb{Q} :

$$
q_{1}=\langle 1,1,1,-1\rangle, q_{2}=\langle 1,1,1,-7\rangle, q_{3}=\langle 1,1,1,1,1\rangle .
$$

a) For each i, determine whether the form q_{i} is isotropic over \mathbb{Q}.
b) For each i, find all the completions of $\mathbb{Q}\left(i . e . \mathbb{Q}_{p}\right.$ or $\left.\mathbb{R}\right)$ over which q_{i} is isotropic. Does your answer, in conjunction with your answer to part (a), agree with Hasse-Minkowski?
7. Let q be a quadratic form over a global field F, and let Ω be the set of (equivalence classes of) non-trivial absolute values on F.
a) Prove that q is hyperbolic over F if and only if it is hyperbolic over F_{v} for all $v \in \Omega$.
b) Let i_{W} denote the Witt index of a quadratic form, and for $v \in \Omega$ let q_{v} denote q viewed as a form over F_{v}. Prove that $i_{W}(q)=\min _{v \in \Omega} i_{W}\left(q_{v}\right)$.
8. From the exercises in Lam, Chapter VI (pages 183-186), do problems 5-7. [Hint: See Examples 2.32-2.34 in Chapter VI.]

