Quadratic Forms (Math 520/620/702)
Problem Set \#3
Due Wed., Nov. 9, 2011, in class.

1. Let \mathbb{H} be the usual (Hamiltonian) quaternion algebra over \mathbb{R}.
a) Show by example that a polynomial of degree n over \mathbb{H} can have more than n roots in \mathbb{H}.
b) Explain where the usual proof that this cannot happen in a field breaks down in the division algebra \mathbb{H}.
c) Explain why a factorization $f(X)=g(X) h(X)$ of polynomials over \mathbb{H} does not in general imply that $f(c)=g(c) h(c)$ for $c \in \mathbb{H}$, though it does if the coefficients of f, g, h lie in \mathbb{R}. [Note: this is related to part (b).]
2. Let $f(X) \in \mathbb{R}[X]$.
a) Show that if $\alpha \in \mathbb{H}$ is a root of $f(X)$, then so is $\beta \alpha \beta^{-1}$ for all $\beta \in \mathbb{H}^{\times}$.
b) Find all the square roots of -1 in \mathbb{H}, and show that this is consistent with part (a).
3. Let $a \in \mathbb{H}$.
a) Write $f(X)=X^{2}-a, \bar{f}(X)=X^{2}-\bar{a}$, and $F(X)=\bar{f}(X) f(X)$. Show that $F(X) \in \mathbb{R}[X]$, and that $F(X)$ has a root α in $\mathbb{C}=\mathbb{R}[i] \subset \mathbb{H}$.
b) Show by direct computation that if $c:=f(\alpha) \neq 0$ then $\beta:=\overline{c \alpha c^{-1}}$ is a root of $f(X)$.
c) Conclude that a has a square root in \mathbb{H}.
[Note: This argument can be generalized to show that \mathbb{H} is "algebraically closed" as a division algebra.
4. Let $a \in \mathbb{H}$ such that $a \notin \mathbb{R}$.
a) Show that $K:=\mathbb{R}(a) \subset \mathbb{H}$ is a degree two field extension of \mathbb{R}; that K is a maximal subfield of \mathbb{H}; and that the centralizer $C_{\mathbb{H}}(K)=K$.
b) Show that a has exactly two square roots in \mathbb{H}. [Hint: Show that any square root of a must commute with a and must therefore lie in K, which is a field.]
c) Where did you use that $a \neq \mathbb{R}$? What happens if $a \in \mathbb{R}$?
5. Let M be the $n \times n$ matrix over $\mathbb{Z}\left[X_{1}, \ldots, X_{n}\right]$ whose (i, j) entry is X_{i}^{j-1}.
a) Show that the determinant of M is equal to $\prod_{i>j}\left(X_{i}-X_{j}\right)$. [Hint: Show that $X_{i}-X_{j}$ divides the determinant for all $i<j$, and consider the degrees of the polynomials.]
b) Deduce that if z_{1}, \ldots, z_{n} are distinct elements of a field L, then the vectors $v_{i}:=$ $\left(1, z_{i}, \ldots, z_{i}^{n-1}\right)$, for $i=1, \ldots, n$, are linearly independent in L^{n}.
c) Let $\beta, z \in L^{\times}$be such that $1, z, \ldots, z^{n-1}$ are distinct, and let N be the $n \times n$ diagonal matrix over L with diagonal entries $\beta, \beta z, \beta z^{2}, \ldots, \beta z^{n-1}$. Show that the matrices $I, N, N^{2}, \ldots, N^{n-1}$ are linearly independent. [Hint: Use (b).]
d) Let $a \in L^{\times}$and let $M=\left(m_{i j}\right)$ be the $n \times n$ matrix over L with $m_{i, i+1}=1$ for $1 \leq i<n ; m_{n, 1}=a$; and $m_{i j}=0$ otherwise. Show that the (i, j) entry of M^{r} is non-zero if and only if $j \equiv i+r(\bmod n)$. Deduce that if $\sum_{i, j=1}^{n} c_{i j} M^{i} N^{j}=0$ for some choice of n^{2} elements $c_{i j} \in L^{\times}$, then the matrices $S_{i}:=\sum_{j=1}^{n} c_{i j} M^{i} N^{j}$ are equal to 0 for all $i=1, \ldots, n$. [Hint: Which entries of S_{i} can be non-zero?]
6. Let K be a field that contains a primitive n-th root of unity ζ. Let $a, b \in K^{\times}$, and let $\beta \in L:=\bar{K}$ be an n-th root of b in the algebraic closure (so $\beta \in L^{\times}$). Consider the K-algebra A with generators u, v and relations $u^{n}=a, v^{n}=b, u v=\zeta v u$.
a) Let M, N be the $n \times n$ matrices over L given in parts (c),(d) of problem 5 , with $z=\zeta$. Show that $M^{n}=a I, N^{n}=b I$, and $M N=\zeta N M$. (Here I is the $n \times n$ identity matrix.) Use this to find a surjective K-algebra homomorphism h from A to the K-algebra $A^{\prime} \subseteq M_{n}(\bar{K})$ that is generated by M, N.
b) Show that for each $i=1, \ldots, n$, the n matrices $M^{i} N^{j}$ (for $j=1, \ldots, n$) are linearly independent. Then deduce that the n^{2} matrices $M^{i} N^{j}$ (for $i, j=1, \ldots, n$) are linearly independent. [Hint: First use 5(c); then use 5(d).]
c) Find the dimensions of A and A^{\prime} over K, and then show that $h: A \rightarrow A^{\prime}$ is an isomorphism of K-algebras.
d) Show that A^{\prime} is a simple K-algebra. [Hint: Show that $A^{\prime} \otimes_{K} L$ is isomorphic to $M_{n}(L)$, and then consider $I \otimes_{K} L$ for any ideal $\left.I \subset A^{\prime}.\right]$
e) Deduce that A is a central simple algebra over K. [Hint: Show that A^{\prime} is central, by considering the center of the tensor product $A^{\prime} \otimes_{K} L$.]
f) What does this say if $n=2$?
7. Fill in the details of Examples 2.13 and 2.17 in Chapter III of Lam. (In particular, in 2.13 , show that the two norm forms in the display are isometric as claimed, and that 7 is not a sum of three squares in the field \mathbb{Q}.)
8. Do the following problems from Lam, Chapter III (pages 75-77):
a) Exercise 2.
b) Exercise 5 .
c) Exercise 6. [Hint: Use equivalent conditions for a quaternion algebra to be split.]
