Read Artin, Chapter 6, sections 2, 3, 8-11. Optional: sections 4-6, 12.

1. From Artin, Chapter 6, do problems 8.1, 8.2, 9.1, 9.3, 11.4 (pages 188-194).
2. a) Show that if $A \in \mathrm{GL}_{n}(\mathbb{R})$ then $A v \cdot w=v \cdot A^{\mathrm{t}} w$ for all $v, w \in \mathbb{R}^{n}$ (taking the usual dot product). What does this say if A is symmetric? if A is orthogonal?
b) Show that if $A \in \mathrm{GL}_{n}(\mathbb{C})$ then $A v \cdot w=v \cdot A^{*} w$ for all $v, w \in \mathbb{C}^{n}$ (taking the Hermitian dot product given by $v \cdot w=\sum_{j=1}^{n} \bar{a}_{j} b_{j}$ for $v=\left(a_{1}, \ldots, a_{n}\right)$ and $w=\left(b_{1}, \ldots, b_{n}\right)$, as in the textbook). What does this say if A is Hermitian? if A is unitary?
3. a) Let F be a field that is not of characteristic 2 , and let B be a symmetric bilinear form on an F-vector space V. Let $q=q_{B}$ be the associated quadratic form (as in Problem Set $\# 10$, problem $4(\mathrm{~b}))$. Let $T \in \operatorname{End}(V)$. Show that T preserves q (i.e., $q(T(v))=q(v)$ for all $v \in V$) if and only if T preserves B (i.e., $T \in \mathrm{O}(V, B)$). [Hint: In one direction, use the formula in Problem Set \#10, problem 5(a).]
b) Using part (a), deduce that $A \in \mathrm{GL}_{n}(\mathbb{R})$ preserves the Euclidean length (i.e., $|A v|=|v|$ for all $v \in \mathbb{R}^{n}$) if and only if $A \in \mathrm{O}_{n}$ (i.e., $A v \cdot A w=v \cdot w$ for all $v, w \in \mathbb{R}^{n}$).
4. Consider the Hermitian dot product on \mathbb{C}^{n}, and for $v \in \mathbb{C}^{n}$ write $|v|=(v \cdot v)^{1 / 2}$ (non-negative square root).
a) Given $v=\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{C}^{n}$, write $a_{j}=b_{j}+i c_{j}$ with $b_{j}, c_{j} \in \mathbb{R}$, and let $\tilde{v}=$ $\left(b_{1}, c_{1}, \ldots, b_{n}, c_{n}\right) \in \mathbb{R}^{2 n}$. Show that $|v|=|\tilde{v}|$, where the left hand side is the norm taken in \mathbb{C}^{n} as above and the right hand side is the usual Euclidean norm taken in $\mathbb{R}^{2 n}$.
b) Show that $v \cdot w=\frac{1}{4}\left(|v+w|^{2}-|v-w|^{2}+i|v-i w|^{2}-i|v+i w|^{2}\right)$ for all $v, w \in \mathbb{C}^{n}$.
c) Let $A \in \mathrm{GL}_{n}(\mathbb{C})$. Use the formula in part (b) to show that A preserves the Euclidean length on \mathbb{C}^{n} (viewed as $\mathbb{R}^{2 n}$) if and only if $A \in \mathrm{U}_{n}$ (i.e., $A v \cdot A w=v \cdot w$ for all $v, w \in \mathbb{C}^{n}$). [Hint: Proceed analogously to what was done in problem 3.]
5. a) Suppose that $A \in M_{n}(\mathbb{R})$ and that -1 is not an eigenvalue of A. Show that $A+I$ is invertible.
b) If A is as in part (a), let $B=(A+I)^{-1}(A-I)$. Show that 1 is not an eigenvalue of B and that $I-B$ is invertible. Show also that $A=(I+B)(I-B)^{-1}$.
c) Show that if A is an orthogonal matrix then B is a skew-symmetric matrix (i.e. $B^{\mathrm{t}}=-B$), and conversely.
