Read Artin, Chapter 5, sect. 1; and Chapter 8, sect. 1-3.

1. From Artin, Chapter 5, do problem 1.3 (page 150). From Artin, Chapter 8, do problems 1.1, 2.2, 3.3 (page 254).
2. Let V be a finite dimensional vector space over a field F.
a) Given an isomorphism $\phi: V \rightarrow V^{*}$ of F-vector spaces, define $B: V \times V \rightarrow F$ by $B(v, w)=[\phi(v)](w)$. Show that B is a non-degenerate bilinear pairing on V.
b) Conversely, show that every non-degenerate bilinear pairing $V \times V \rightarrow F$ arises in this way from an isomorphism $\phi: V \rightarrow V^{*}$. In particular, if $F=\mathbb{R}$ then every inner product on V arises from such an isomorphism.
c) If $F=\mathbb{R}$ and B is the dot product on $V=\mathbb{R}^{n}$, find the isomorphism $V \rightarrow V^{*}$ that induces B.
3. If $C \in M_{n}(F)$ is a symmetric matrix, define $B: F^{n} \times F^{n} \rightarrow F$ by $B(v, w)=v^{t} C w$, where $v, w \in F^{n}$ are viewed as column vectors and v^{t} is the transpose of v.
a) Show that B is a symmetric bilinear form. What is B if C is the identity?
b) Show that B is non-degenerate if and only if C is invertible.
4. Let V be a finite dimensional F-vector space, say with basis $\left\{e_{1}, \ldots, e_{n}\right\}$, and associated dual basis $\left\{x_{1}, \ldots, x_{n}\right\}$ on V^{*}. A map $q: V \rightarrow F$ is called a quadratic form on V if it is given by a homogeneous polynomial $\sum_{i \leq j} d_{i, j} x_{i} x_{j}$ in x_{1}, \ldots, x_{n}. That is, $q\left(\sum a_{i} e_{i}\right)=$ $\sum_{i \leq j} d_{i, j} a_{i} a_{j}$.
a) Show that the quadratic forms on V form a vector space $\mathrm{QF}(V)$, and that each quadratic form q has the property that $q(c v)=c^{2} q(v)$ for all $c \in F$ and $v \in V$.
b) If B is a symmetric bilinear form on V, define $q_{B}(v)=B(v, v)$. Show that the map $B \mapsto q_{B}$ defines a vector space homomorphism $\alpha: \operatorname{SBilin}(V) \rightarrow \operatorname{QF}(V)$, where $\operatorname{SBilin}(V)$ is the vector space of symmetric bilinear forms on V. [Hint: To show that $\alpha(B) \in \mathrm{QF}(V)$, let $C=\left(c_{i, j}\right)$ be the symmetric matrix associated to B with respect to the given basis. That is, $B(v, w)=v^{t} C w$, where on the right hand side we write v, w as column vectors in terms of the basis $\left\{e_{1}, \ldots, e_{n}\right\}$. Now evaluate $B(v, v)$ and see that it has the right form.]
c) If B is the dot product on \mathbb{R}^{n}, find $\alpha(B) \in \mathrm{QF}\left(\mathbb{R}^{n}\right)$.
5. a) In the notation of problem $4(\mathrm{~b})$, show that if $q=\alpha(B)$ then $q(v+w)-q(v)-q(w)=$ $2 B(v, w)$ for all $v, w \in V$.
b) If $\operatorname{char}(F) \neq 2$, deduce that α is an isomorphism, and find the dimensions of $\operatorname{SBilin}(V)$ and $\mathrm{QF}(V)$ in terms of $\operatorname{dim}(V)$. What goes wrong if $\operatorname{char}(F)=2$?
c) Let $V=F^{2}$ with $\operatorname{char}(F) \neq 2$. For $v=(a, b) \in V$ let $q_{1}(v)=a^{2}-b^{2}$ and let $q_{2}(v)=a^{2}+a b+b^{2}$. Explain why q_{1}, q_{2} are quadratic forms on V, and find the symmetric bilinear forms B_{1}, B_{2} on V such that $\alpha\left(B_{i}\right)=q_{i}$ for $i=1,2$. Also find the symmetric matrices C_{1}, C_{2} that induce B_{1}, B_{2} as in problem 3. What goes wrong if $\operatorname{char}(F)=2$?
