Review Artin, Chapter 3, sections 3.3, 3.4, 3.6, 3.7; and Chapter 4, sections 4.1-4.3.

1. a) Let V, W, X be finite dimensional vector spaces, and let $S: W \rightarrow X$ and $T: V \rightarrow W$ be linear transformations. Show that $\operatorname{rank}(S \circ T) \leq \operatorname{rank}(T)$ and that $\operatorname{rank}(S \circ T) \leq$ $\operatorname{rank}(S)$.
b) Let $T: V \rightarrow V$ be a linear operator on a finite dimensional vector space V. Let r_{n} be the rank of $T^{n}=T \circ T \circ \cdots \circ T$ (with n copies of T). Prove that $r_{n+1} \leq r_{n}$ for all n, and deduce that the sequence $r_{1}, r_{2}, r_{3}, \ldots$ is eventually constant.
c) What happens in (b) if instead V is infinite dimensional?
2. Determine whether each of the following assertions is true or false. Explain.
a) If V is a finite dimensional vector space with basis $B=\left\{v_{1}, \ldots, v_{n}\right\}$, and W is a subspace of V, then $B \cap W$ is a basis for W.
b) If V is a vector space, and S is a linearly independent subset of V that is not contained in any strictly larger linearly independent subset of V, then S is a basis of V.
3. Let V be an n-dimensional F-vector space, with dual space $V^{*}=\operatorname{Hom}(V, F)$.
a) Let $B=\left\{v_{1}, \ldots, v_{n}\right\}$ be a basis of V. Show that for every $i=1, \ldots, n$ there is a unique $\delta_{i} \in V^{*}$ such that $\delta_{i}\left(v_{j}\right)=1$ if $i=j$ and $\delta_{i}\left(v_{j}\right)=0$ if $i \neq j$.
b) Show that the elements $\delta_{1}, \ldots, \delta_{n}$ in part (a) form a basis B^{*} of V^{*}.
4. a) In the notation of problem 3, show that there is a unique isomorphism $\phi_{V, B}: V \rightarrow V^{*}$ such that $\phi_{V, B}\left(v_{i}\right)=\delta_{i}$ for $i=1, \ldots, n$.
b) By giving an example, show that the map $\phi_{V, B}$ can depend on the choice of the basis B. [Hint: Take $V=\mathbb{R}^{2}$, take $B=\left\{e_{1}, e_{2}\right\}$, and take B^{\prime} to be some other basis. Then compute both $\phi_{V, B}$ and $\phi_{V, B^{\prime}}$ in terms of the bases B, B^{*} on V, V^{*}.]
5. In the notation of problem 4 above, let $\psi_{V, B}=\phi_{V^{*}, B^{*}} \circ \phi_{V, B}: V \rightarrow V^{* *}$.
a) Show that $\psi_{V, B}: V \rightarrow V^{* *}$ is an isomorphism.
b) For $v \in V$, show that $\psi_{V, B}(v)$ is the element of $V^{* *}$ taking $f \in V^{*}$ to $f(v)$.
c) Deduce that the isomorphism $\psi_{V, B}: V \rightarrow V^{* *}$ is independent of the choice of B. Contrast this with the situation in problem $4(\mathrm{~b})$. (As discussed in class, we say that $\psi_{V, B}$, unlike $\phi_{V, B}$, is a natural isomorphism.)
