Reminder: There will be an exam in class on Wednesday, Oct. 25. This problem set is a sample exam. Those who complete this and submit it in class on Monday, Oct. 23, will be given extra credit.

1. Let H be the set of $n \times n$ complex matrices M such that $|\operatorname{det} M|=1$. Show that H is a subgroup of $\mathrm{GL}_{n}(\mathbb{C})$. Is H normal in $\mathrm{GL}_{n}(\mathbb{C})$?
2. Find two non-isomorphic groups of order 18. Explain.
3. Find all integers n such that the dihedral group D_{11} has an element of order n.
4. Find all real numbers c such that the subset $V_{c}=\left\{(x, y, z) \in \mathbb{R}^{3} \mid x+y+z=c\right\}$ is a subspace of \mathbb{R}^{3}. For each such c, find a basis of V_{c} and find the dimension of V_{c}.
5. Consider the action of S_{3} on its subgroup C_{3} given by conjugation. Find the orbits and the stabilizers.
6. Find all integers n such that the equation $21 x+36 y=n$ has a solution in integers x, y. Justify your assertion.
7. Determine if there is a homomorphism from S_{3} to some group G whose kernel has order 2.
8. Is there a field of six elements? a field of seven elements? Justify your assertions.
