Read Artin, Chapter 2, sections 7-8.

1. From Artin, Chapter 2, do these problems (pages 69-77):
5.1, 5.2, 6.4, 7.1.
2. Which of the following relations are reflexive? symmetric? transitive? equivalence relations?
i) On $\mathbb{Z}, a \sim b$ if $a+b$ is even.
ii) On $\mathbb{Z}, a \sim b$ if $a b$ is even.
iii) On $\mathbb{R}, a \sim b$ if $a b>0$.
iv) On $\mathbb{R}^{\times}, a \sim b$ if $a b>0$.
3. Find the logical flaw in the following argument, which purports to prove the (false) assertion that if a relation is symmetric and transitive then it must be reflexive and hence be an equivalence relation: "If $a \sim b$ then $b \sim a$ by symmetry; and so $a \sim a$ by transitivity. So the relation is reflexive." Also, give an example of a relation that shows that the conclusion of the argument need not be true. [You may use an example from problem 2.]
4. Which of the following are subgroups H of the given group G ? Which are normal subgroups?
a) $H=\{$ permutations that take 1 to 1$\}, G=S_{4}$.
b) $H=\left\{\right.$ transpositions in $\left.S_{5}\right\} \cup\{\mathrm{id}\}, G=S_{5}$.
c) $H=\mathrm{SL}_{2}(\mathbb{R}), G=\mathrm{GL}_{2}(\mathbb{R})$.
5. Consider the map $\phi: D_{4} \rightarrow \mathbb{Z} / 2 \mathbb{Z}$ that takes each rotation to 0 and each flip to 1.
a) Show that ϕ is a surjective homomorphism, and find its kernel.
b) Describe the fibers of ϕ, and show that these fibers are the same as the cosets of the kernel of ϕ.
