Read Herstein, Chapter 5, section 3.

1. From Herstein, do these problems:
a) Chapter 3, supplementary problems, pages 167-168: \#7, 9, 16 .
b) Chapter 5, section 1, page 215: $\# 5,10,11$.
c) Chapter 5, section 3, pages 227-228: \#6(a,c), 7, 10(a,b). [Hint for \#7: First use Herstein, §3.10, \#3.]
2. Which of the following groups are cyclic? $(\mathbb{Z} / 9)^{\times},(\mathbb{Z} / 10)^{\times},(\mathbb{Z} / 15)^{\times}$. For each one that is, find a generator.
3. a) Show that $\alpha=\cos (\pi / 9)$ is an algebraic number. [Hint: Let $\beta=2 \alpha$ and evaluate $\beta^{3}-3 \beta$, using the identity $2 \cos (2 \pi / n)=e^{2 \pi i / n}+e^{-2 \pi i / n}$.]
b) Do the same with α replaced by $\cos (2 \pi / 7)$. [Hint: Now use $\beta^{3}+\beta^{2}-2 \beta$.]
4. a) Show that if $\alpha \in \mathbb{Q}$ is a root of a polynomial $\sum_{i=0}^{n} c_{i} x^{i} \in \mathbb{Z}[x]$ with $c_{0}, c_{n} \neq 0$, and $\alpha=a / b$ in lowest terms (i.e. $a, b \in \mathbb{Z}$ are relatively prime), then $a \mid c_{0}$ and $b \mid c_{n}$.
b) Explain why this generalizes problem 11 in $\S 5.1$ of Herstein.
c) Show that $\sqrt[3]{2}, \cos (\pi / 9)$, and $\cos (2 \pi / 7)$ are each algebraic of degree 3 over \mathbb{Q}; i.e., in each case, 3 is the degree of the minimal polynomial satisfied by the number. [Hint: Apply part (a), and use problem 3 above.]
