Read Herstein, Chapter 3, sections 10-11.

1. From Herstein, Chapter 3, do these problems:
a) Section 3.7, page 149: \#8.
b) Section 3.9, page 158-159: $\# 3,4,7$. [Hint for $\# 4(\mathrm{c})$: Find a solution to $X^{2}+X+4$ in the field of part (a).]
c) Section 3.10, page 161: \#2, 3. [Hint for \#3: Let $y=x+1$ and write $x\left(1+y+\cdots+y^{p-1}\right)=$ $(y-1)\left(1+y+\cdots+y^{p-1}\right)=y^{p}-1=(x+1)^{p}-1$. Then use the binomial theorem to find an expression for $1+y+\cdots+y^{p-1}$ and apply Eisenstein to that polynomial.]
d) Section 3.11, page 166: \#11.
2. Let K be a field, $\alpha \in K$, and $f(x) \in K[x]$ a non-zero polynomial.
a) Show that there exists $q(x) \in K[x]$ satisfying $f(x)=(x-\alpha) q(x)+f(\alpha)$. [Hint: Division algorithm.]
b) Deduce that α is a root of $f(x)$ if and only if $x-\alpha$ divides $f(x)$ in $K[x]$.
c) Show that if $\alpha_{1}, \ldots, \alpha_{m} \in K$ are distinct roots of $f(x)$, then $f(x)$ is divisible by $\left(x-\alpha_{1}\right) \cdots\left(x-\alpha_{m}\right)$. [Hint: Induction and (b).]
d) Conclude that if f has m distinct roots, then the degree of f is at least m.
3. Let p be a prime number other than 2 .
a) Let $a, b \in \mathbb{Z} / p$. Show that $a^{2}=b^{2}$ if and only if $a= \pm b$.
b) Deduce that \mathbb{Z} / p contains exactly $(p-1) / 2$ non-zero squares (i.e. elements of the form c^{2} for some $c \in \mathbb{Z} / p$).
c) Show that if $a \in \mathbb{Z} / p$ is non-zero, then $a^{p-1}=1$ in \mathbb{Z} / p. [Hint: See Herstein, page 24, \#14 (done on Problem Set \#3).]
d) Deduce that if $a \in \mathbb{Z} / p$ is non-zero then $a^{(p-1) / 2}= \pm 1$, and that if $a \in \mathbb{Z} / p$ is a non-zero square then a is a root of the polynomial $f(x)=x^{(p-1) / 2}-1$.
4. Let p be a prime number other than 2 .
a) Suppose that $a \in \mathbb{Z} / p$ is non-zero. Show that a is a square in \mathbb{Z} / p if and only if $a^{(p-1) / 2}=1$ in \mathbb{Z} / p, and a is not a square if and only if $a^{(p-1) / 2}=-1$ in \mathbb{Z} / p. [Hint: Problem 2(d) and problem 3.]
b) Use part (a) to show that -1 is a square modulo p if and only if $p \equiv 1(\bmod 4)$.
c) For each of $p=5,7,11,13$, either find a $\sqrt{-1}$ in \mathbb{Z} / p or show that none exists.
