Read Herstein, Chapter 3, sections 3-4.

1. From Herstein, Chapter 3, do these problems:
a) Section 3.2, page 130: $\# 6,7,13$ (note that $\# 13$ asks for a new proof of p.24, \#15).
b) Section 3.4, page 135: $\# 3,5-8$.
2. Which of the following are ring homomorphisms? For those that are not, why not? For those that are, find the kernel and image.
i) $\mathbb{R}[x] \rightarrow \mathbb{C}, f(x) \mapsto f(3)$.
ii) $\mathbb{R}[x] \rightarrow \mathbb{C}, f(x) \mapsto f(2 i)$.
iii) $\mathbb{C} \rightarrow \mathbb{R}, a+b i \mapsto a$ for $a, b \in \mathbb{R}$.
iv) $\mathbb{Q}[\sqrt{2}] \rightarrow \mathbb{Q}[\sqrt{3}], a+b \sqrt{2} \mapsto a+b \sqrt{3}$ for $a, b \in \mathbb{Q}$.
v) $\mathbb{Q}[\zeta] \rightarrow \mathbb{Q}[\zeta], a+b \zeta \mapsto a+b \zeta^{2}$, for $a, b \in \mathbb{Q}$, where $\zeta=e^{2 \pi i / 3}$.
vi) $\mathbb{Z}[i] \rightarrow \mathbb{Z} / 5, a+b i \mapsto a+2 b$, for $a, b \in \mathbb{Z}$.
vii) $\mathbb{C} \rightarrow M_{2}(\mathbb{R}), a+b i \mapsto\left(\begin{array}{cc}a & -b \\ b & a\end{array}\right)$, for $a, b \in \mathbb{R}$.
3. Suppose that $\phi: \mathbb{R} \rightarrow \mathbb{R}$ is a homomorphism of rings.
a) Show that $\phi(r)=r$ for all $r \in \mathbb{Z}$.
b) Do the same for all $r \in \mathbb{Q}$.
c) Show that if $r \geq 0$ then $\phi(r) \geq 0$. [Hint: $r \geq 0 \Leftrightarrow r=s^{2}$ for some s.]
d) Show that ϕ is an increasing function. [Hint: Part (c).]
e) Conclude that ϕ is the identity. [Hint: Parts (b) and (d).]
4. Let \mathbb{H} be the ring of quaternions $\alpha=a+b i+c j+d k$, with $a, b, c, d \in \mathbb{R}$. Define the conjugate $\bar{\alpha}=a-b i-c j-d k$, and the absolute value $|\alpha| \geq 0$ by $|\alpha|^{2}=a^{2}+b^{2}+c^{2}+d^{2}$.
a) Show that $|\alpha|^{2}=\alpha \bar{\alpha}$ and that $\overline{\alpha \beta}=\bar{\beta} \bar{\alpha}$. Conclude that $|\alpha \beta|=|\alpha||\beta|$. Also, find all $\alpha \in \mathbb{H}$ such that $|\alpha|=0$.
b) Show that \mathbb{H} does not have any zero-divisors. [Hint: Use part (a).]
